

A Presentation to the GSMA, GPM meeting in Doha, Qatar, April 18 2012

Mats Vilander General Manager, SVP Global Telecom

Agenda

- 1. Wind turbine solutions for telecom sites
- 2. Drivers for adding wind
- 3. Case studies for a Telecom Site
 - 1. Adding wind
 - 2. New site

Telecom references

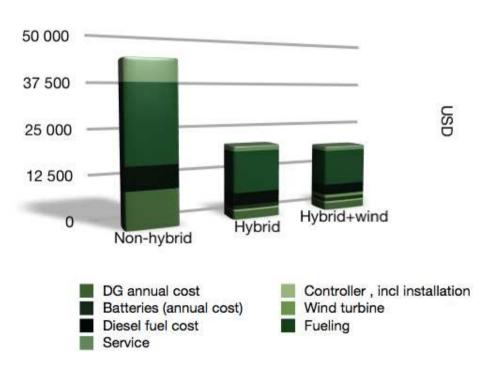
Value Proposition for Mobile Operators

- Fully utilising the existing site space and infrastructure
 - Site Space in tower not fully utilised
 - A light weight wind turbine can be used in the existing infrastructure, fully integrated into the site (max wind-load on 105 Kg f at 65 m/s)
 - Easy to install

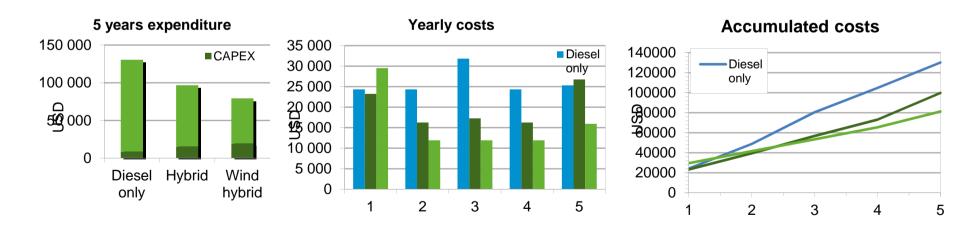
OPEX Saver:

- Reduce up to 50% of the diesel consumption for existing remote rural sites, sometimes up to 100% of diesel (repeater sites)
- Save O&M costs for diesel gen. sites

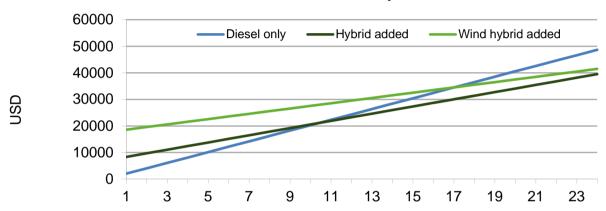
CAPEX Saver:

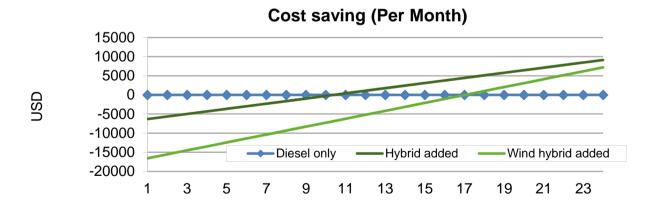

 Reduce the usage of diesel up to 100% for new sites

Operator Business Case


- Comparison of costs for three types of off-grid sites:
 - 100% diesel
 - Hybrid (DG + controller & batteries)
 - Hybrid (DG + controller & batteries + wind
- Assumptions
 - Site load: 2 kW
 - Wind turbines: 1
 - Average wind speed: 7 m/s
 - Diesel price: 0,3 USD/I
- Conclusion
 - Cost reduction of more than 50%
 - Annual saving of 24,000 USD for hybrid cases
 - Payback in less than 2 years

Business Case Hybrid Battery Diesel and Wind


ısiness case											
Case	Diesel only	Hybrid	Wind hybrid	Year	1	2	3	4	5		
CAPEX	8 500	13 500	24 100	Diesel or	nly 24340	24340	31840	24340	25340		
OPEX yearly	24 340	16 266	11 940	Hybrid	23 266	16 266	17 266	16 266	26 766		
OPEX monthly				Wind hyb	orid 29 540	11 940	11 940	11 940	15 940		
				Accumul	ated					Savings	
5 year expenditure		Diesel or	nly 24340	48680	80520	104860	130200				
CAPEX	8 750	15 500	19 600	Hybrid	23265,714	39 531	56 797	73 063	99 829	30 371	239
OPEX	121 700	81 329	59 699	Wind hyb	orid 29539,78	41 480	53 419	65 359	81 299	48 901	389
TOTAL	130 450	96 829	79 299								
Saving		33 621	51 151								
		25,77%	39,21%								



^{*} Assumes 2 Wind turbines per site

Business Case Hybrid Battery Diesel and Wind

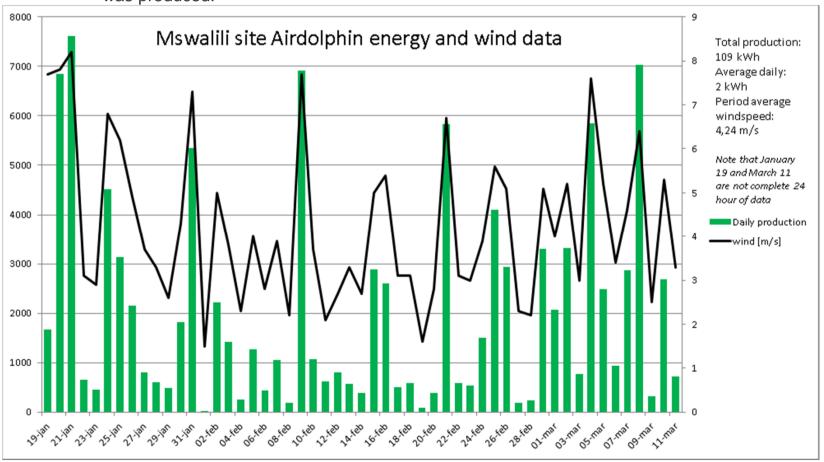
Accumulated costs per month

^{*} Assumes 2 Wind turbines per site

Vodacom South Africa

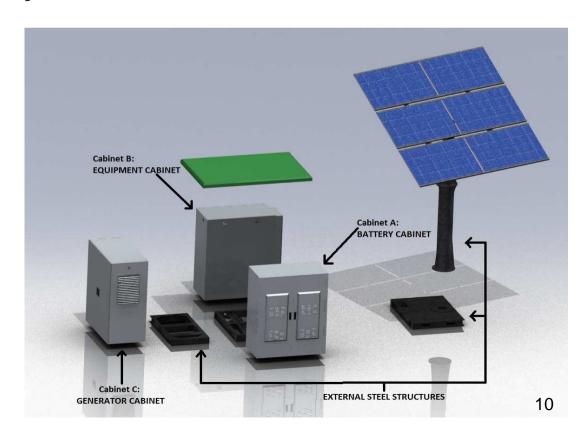
- The site was originally powered by a diesel generator and the SAM controller. In January 2012, the Airdolpin PRO wind turbine was added.
- The wind turbine is used on a hybrid site as a mean to charge batteries, thus reducing diesel consumption.
- Technical
 - Turbine: Airdolphin PRO (48 VDC)
 - Site: Telecom site
 - Power: Diesel, batteries and wind
 - Battery 720 Ah @ 48 Volt
 - Load 50 A DC

Location: Mswailili, Eastern Cape


Installation: Existing telecom tower

Available wind energy

- At Vodacom's site (Mswailili, outside Durban) wind speeds of 1,9-8,2 m/s (daily average) were experienced during the 53 day period. The average wind speed for the trial duration was 4,24 m/s.
- In average, a daily energy production of 2 kWh was achieved. On the best day, 7,6 kWh was produced.



Example of complete Hybrid Battery Diesel site with Wind and Solar

The new Hybrid solution is a modular cabinet system that forms a complete solution. The system is tailor-made to clients requirements.

The site solution configuration consists of the following:

- External Steel Structures
- Cabinet A: Battery Cabinet
- Cabinet B: Equipment Cabinet
- Cabinet C: Generator Cabinet
- Sun tracking PV (size depending on load)
- Windturbine in Telecom tower (1-4 units)

Installation outside Capetown

Terzobix installation video.avi

Summary

- With proper wind (min 5 M/S in average wind speed, the wind turbine will:
 - Complement to PV during low insolation periods
 - Valuable add on to diesel battery hybrid sites
 - Markets most efficient wind turbine (Wh/kg)
- The Airdolphin PRO is tested and verified for Telecom application
- The typical pay off for adding wind is 1-2 years
- The typical off grid site can handle 1-2 turbines in the existing tower = cost efficient installation

Thank you

