Safaricom's Community Power Projects

GSMA – Green Power for Mobile (GPM) 7th Working Group Workshop

Sarova Whitesands - Mombasa - Kenya

15th – 16th March 2011

George Ponde

Technical Operations Support & Logistics, Safaricom Limited

Schedule

- Safaricom Network Footprint.
- Powering the Network
- Objectives of Community Power Projects.
- Current State and Applications.
- Impacts

Future Outlook

Network Footprint

Powering the Network

• Safaricom has 2,167 sites on grid power supply, 235 sites on 24/7 diesel generator power and 83 sites on Remote Power Solutions (RPS) a mix of Solar-Wind-Diesel-battery hybrid.

• Safaricom contributes to community power indirectly by extending the grid infrastructure with own resources up to sites within 6 km radius from existing grid infrastructure.

Safaricom also contributes directly by providing community power applications with excess power from the base stations (at time deliberate power system over-specification) meeting 100% of cost.
Rural population is poor and can ill-afford cost of power.

Green Power Sites

Green Power Mix

#	Power Source Category	No. of Sites
1	Solar_Wind_Hybrid (Pure Green)	2
2	Solar_Diesel_Hybrid	2
3	Solar_Wind_Diesel_Hybrid	52
4	Wind_Diesel_Hybrid	7
5	Battery_Diesel_Hybrid	14
6	VRB_Diesel_Hybrid	6
	Total Number of sites on RPS	83
	Number of Sites on Air	2485
	% of Green Power Sites	3.34%
		Safarico

Community Power Projects - Objectives

- Slow pace of electricity infrastructure penetration in rural areas.
- Excess power from the base station.
- Network access expansion in off-grid rural areas.
- CSR empowering the community

/subscriber

Site security especially in hostile areas.
Increased (ARPU) due to availability of power for mobile phone charging and also from resultant economic stimulation from small businesses due to the project.
Brand Image and subscriber loyalty

Community Power Projects - Objectives

- Poor local community, cannot afford cost of power.
- Request from the community.
- Request from donors engaged with the community in other development projects.

Rapid expansion of Mobile Money
MPESA services to the rural areas.
Optimum network utilization and improved Rate of Return (no sleeping cells) for lack of subscriber activity.

Current State and Applications

#	Community Power Application	Power Source	No. of Sites
1	Water Pumping	Diesel Generator	1
2	Community Computer Project	Pure Green (Solar_Wind Hybrid)	2
3	Mobile Charging Booths	Battery_Diesel Generator	4
		VRB_Diesel Generator	1
		Solar_Wind_Diesel_Hybrid	
		Wind_Diesel_Hybrid	1
		Solar_Diesel_Hybrid	1
		Pure Green (Solar_Wind Hybrid)	2
4	Street Lighting	Diesel Generator	2
5	Hospital Facility	Diesel Generator	THE R. R. LEWIS CONTRACTOR OF A DAY
6	Sockets and Lighting to Community	Diesel Generator	4
7	Security Surveillance Radio	Solar_Wind_Diesel_Hybrid	
	Total Number of sites Supported	25	
	Number of Sites on Air	2485	
	% of Community Power Sites	1.01%	

• Street-lights and mobile charging booth in one of the community power

Current Status

• School lighting and socket power (computer lab).

Current Status

• Mobile phone charging facility – power output regulated via a 16Apms CB.

Current Status

Community Power Project Costs

	#	Additional Equipment & Infrastructure Requirement for Community Project	Total CAPEX Cost (USD)	Total OPEX Cost (USD) pa	OPEX Items
	1	11kVA Extra Genset Power	65,160.00	44,948.07	Extra Cost of Diesel
	2	Street Lighting Infrastructure	50,820.44	694.10	250watts bulbs replacement.
	3	Mobile Charging Booth	85,512.82	10,738.46	Booth repair costs since installation
	4	Solar Panel and Inverter Charger for Community Computer Laboratory	14,673.08	2,307.69	Battery replacement cost after 2years
149	-	Total	216,166.33	58,688.32	
					Safaricom

Impact of Community Power

- Improvement in local security both for the base station and the community (street-lighting, community engagement).
- Positive brand image and reports to shareholders and to the wider society through association with community power.
- Increased sales amongst conscious customers and a competition edge.
- Expanded access and service giving to rural communities/schools.
- Bridging the digital/information divide through access to information.

Contribution to local community development; opportunities for entrepreneurs/vendors and extended business hours (MDG goals).

Improved social cohesion and peaceful coexistence amongst communities and clans with warring cultures (cattle raids, inter-clan wars e.t.c).

Social Impact

Improved healthcare, inter-communitycohesion, access to communication,improved standard of living.

Barriers

• High CAPEX and OPEX costs to implement and sustain power sources to allow for community power applications. Decommissioning of power infrastructure on connection of national grid power.

• Non-Core business activity; administrative challenges in implementation and maintenance of community power applications.

• Lack of local maintenance/technical expertise to offer first level support.

- Managing Community Expectations;
 - Expectation of reliable, uninterrupted, and quality power to local community power applications.
 - Demand for more services once basic needs are provided.

 Local community increased reliance to the provided community power even when grid power is finally connected to the area (poor communities).

Technical, Cultural and Regulatory barriers to implementation

Safaricom

Requirement by local community for power supply to a community school for the handicapped, water pumping, Government Security camp e.t.c.

Barriers

Possible Community Power for Mobile Models

Government - Regulatory

Future Outlook

- Safaricom Expectations;
- Provide excess power to the investor (partner) with the power interface unit.
- Coordinate implementation.
- Invest into the project from Returns Accrued;
 - Expected increased ARPU.
 - Savings from Security, Network Monitoring of power, fuel, network usage

e.t.c.

• Community kiosk to serve as a local customer service shop offering airtime, sales of other merchandise; phones, modems, MPESA e.t.c.

- Source of customer feedback on network quality, outages e.t.c.
- Develop the partner to a stand-alone level capable of providing power to Safaricom and the community.

