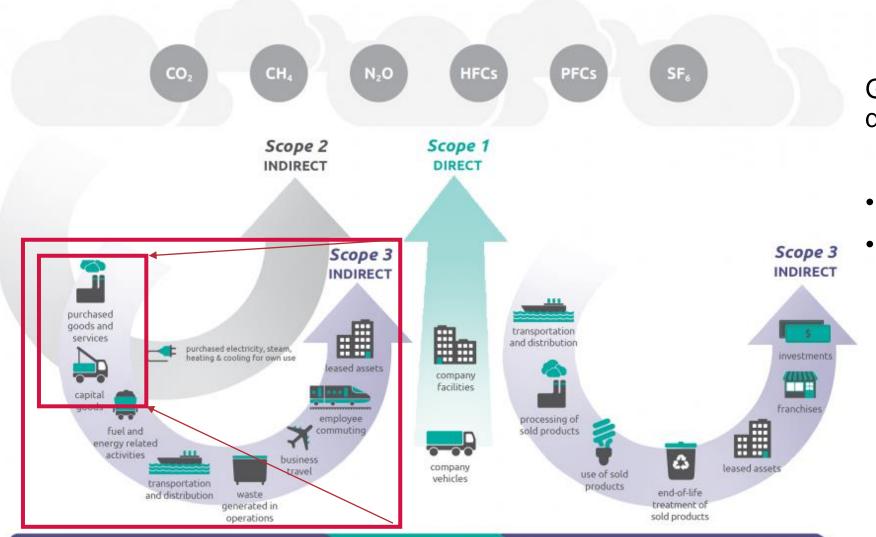
Scope 3

GSMA & CDP Supply Chain


Agenda

- Introduction to Scope 3
- Scope 3 in the CDP Climate Change Questionnaire
- Approaches: Utilising primary data
- Product level data
- **■** Q&A

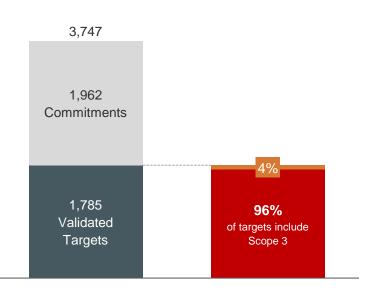
Scope 3 Emissions Protocols

GHG Protocol have excellent documents freely available.

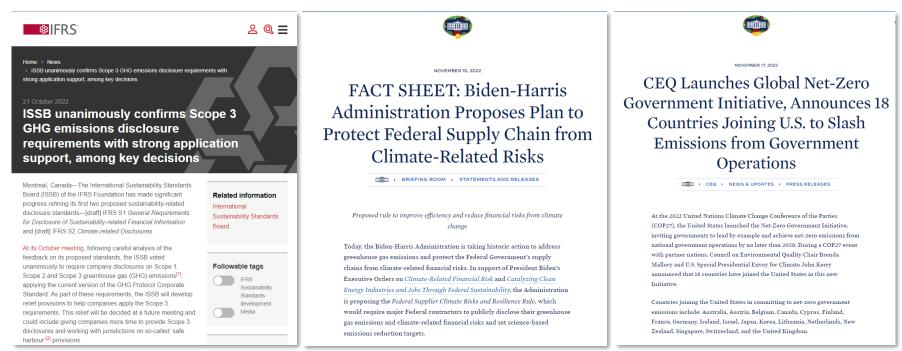
- GHG Scope 3 standard
- GHG Scope 3 calculation guidance

GSMA have also created sector specific guidance

Upstream activities


Reporting company

Downstream activities


SCOPE 3 TARGET-SETTING IS CRITICAL TO ACHIEVE SYSTEM-WIDE DECARBONISATION

Significant progress on Scope 3 emissions, regulators and governments to push for SBT setting to tackle wider GHG

Source

Number of companies as of October 2022

Source

Source

Scope 3 in the CDP Climate Change Questionnaire

Target Questions: Greenhouse Gas Emissions Data

2024 MODULES

- 1 Introduction
- **2** Identification, Assessment & Management of Dependencies, Impacts, Risks, & Opportunities
- **3** Disclosure of Risks & Opportunities
- 4 Governance
- **5** Business Strategy
- **6** Environmental Performance: Consolidation Approach
- 7 Environmental Performance: Climate Change
- 8 Environmental Performance: Forests
- 9 Environmental Performance: Water Security
- **10** Environmental Performance: Plastics
- 11 Environmental Performance: Biodiversity
- **12** Environmental Performance: Financial Services
- 13 Further information & Sign off

Scope 1 – Greenhouse gases that your company emits (7.6)

Company Facilities Company Vehicles

Scope 2 – Greenhouse gases that others emit due to your energy use (7.7)

Purchased electricity, steam, heating & cooling, for own use

Scope 3 – Everything else (7.8)

Supplier emissions

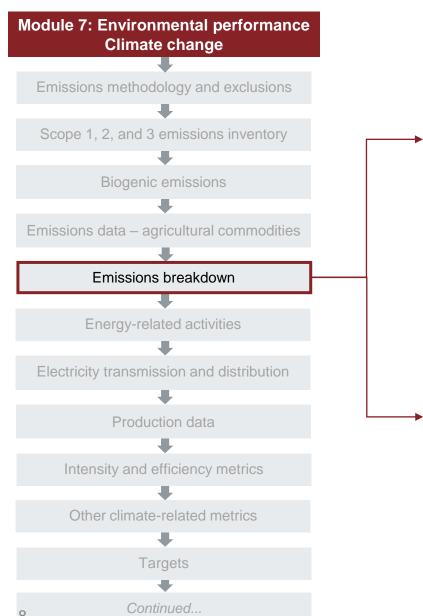
Product use

Employee commuting

Module 7 – Targets

Module 7: Environmental performance Climate change Emissions methodology and exclusions Scope 1, 2, and 3 emissions inventory Biogenic emissions Emissions data – agricultural commodities Emissions breakdown Energy-related activities Electricity transmission and distribution Production data Intensity and efficiency metrics Other climate-related metrics **Targets** Continued...

(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.(previously C4.1a)

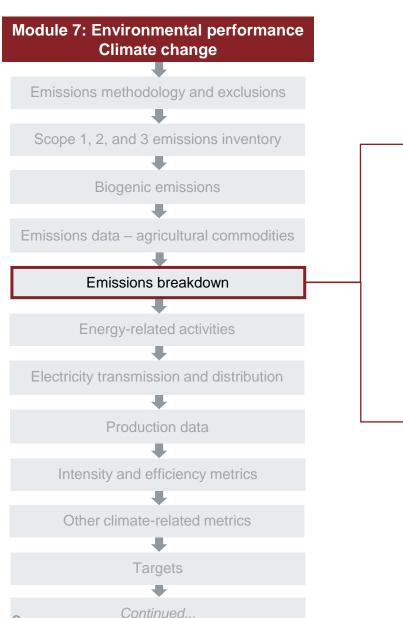

(7.53.2) Provide details of your emissions intensity targets(s) and progress made against those targets(s).(previously C4.1b)

(7.54) Did you have any other climate-related targets that were active in the reporting year? (previously C4.2)

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.(previously C4.3a)

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below. (previously C4.3b)

Module 7 – Emissions breakdown – Scope 3


(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions. (Previously 6.5)

(7.8.1) Disclose or restate your Scope 3 emissions data for previous years. (Previously 6.5a)

Resources:

- The GHG Protocol's Corporate Value Chain (Scope 3)
 Accounting and Reporting Standard for information on Scope 3 boundaries (pages 34-38)
- CDP's Technical Note on the relevance of Scope 3 categories by sector
- GHG Protocol's Scope 3 evaluator
- GSMA Scope 3 guidance

Module 7 – Verification and allocation

(7.9) Indicate the verification/assurance status that applies to your reported emissions (Previously C10.1)

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements. (Previously C10.1c)

(7.26) Allocate your emissions to your customers listed below according to the goods or services you have sold them in this reporting period. (previously SC1.1, SC1.2)

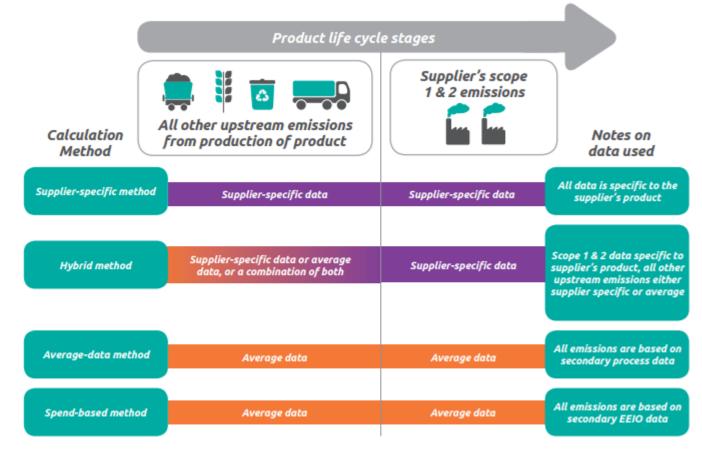
Module 5 – Value chain engagement

Existing question

(5.11) Do you engage with your value chain on environmental issues? (previously C12.1)

New questions for 2024

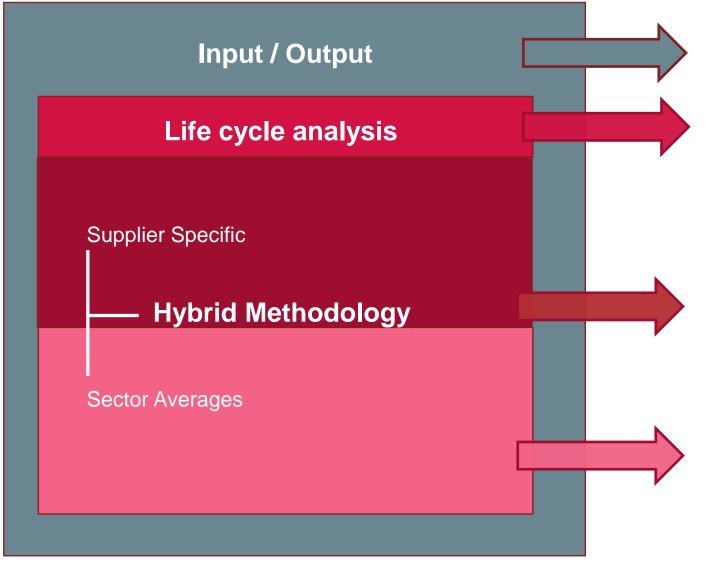
(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?


(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Approaches

Scope 3 Emissions Approaches

- The GHG protocol has flexible approaches built in to calculate scope 3.
- You can use multiple approaches within categories.



Using a combination of calculation methods

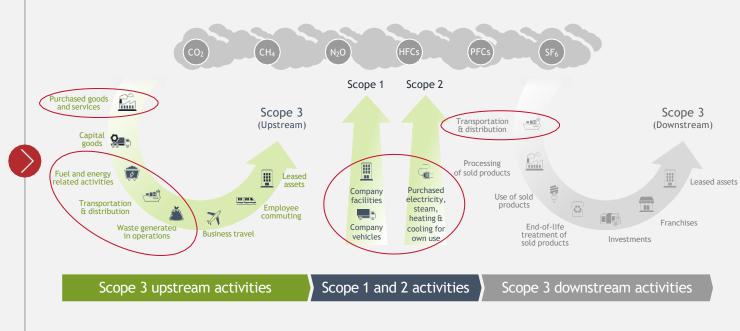
Companies may use a combination of calculation methods for various scope 3 categories throughout the inventory, as well as for various scope 3 activities within each scope 3 category. For example, within each scope 3 category, a company may use more specific methods for the activities that contribute most to emissions and less specific methods for the activities that contribute least to emissions.

Methodologies to match goals

- 100% of Scope 3 Upstream
- High level overview
- Show categories that matter
- Great for small # of high intensity goods
- Accurate, Good data available
- ▼ Cradle-to-cradle
- Supplier data + Industry Averages
- Operational Emissions of Suppliers
- Most recent + most granular
- Known data quality issues
- Suppliers upstream emissions (PG&S)
- Suppliers calculate own scope 3

Product level data

What is a Product Carbon Footprint (PCF)


PCF measures the carbon equivalent emissions attributable to a product

It estimates the total emissions of greenhouse gas (GHG) associated with a specific product throughout its life cycle

PCF accounts for:

- Product related emissions of scope 1, 2
- Select product attributable S3 emission¹
- Product related Transport & Distribution emissions (S3 downstream) to client facilities

Supplier product life cycle

Categories included in PCF calculations (product attributable categories)

Source: GHG protocol; BCG analysis

What is the CDP data telling us?

A key enabler to ensure environmental action is supply chain product-level data however, only few suppliers are providing it (CDP data)

66%

of CDP Supply Chain members believe that product Life Cycle Analysis will be a key future trend for driving sustainable supply chains

Only 2%

of members' suppliers are providing the desired product level Life Cycle Analysis data

Module 7 – product level information

Module 7: Environmental performance – Climate change

Emissions reduction initiatives

Best Available Techniques **

CCS/U **

Land management practices *

Life-cycle emissions assessment **

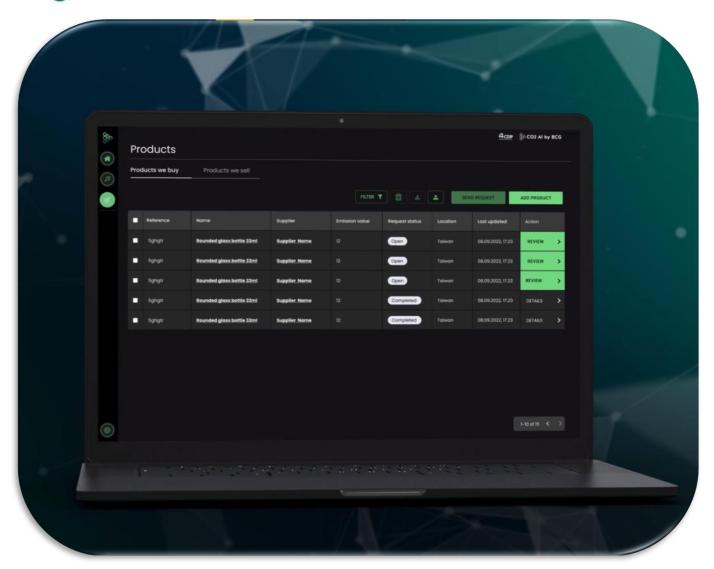
Product-level emissions *

Low-carbon products and services *

Project-based carbon credits

(7.73) Are you providing product level data for your organization's goods or services? (previously SC4.1)

(7.73.2) Complete the following table for the goods/services for which you want to provide data (previously SC4.2a)


(7.73.3) Complete the following table with data for lifecycle stages of your goods and/or services (modified from SC4.2b)

(7.73.4) Please detail emissions reduction initiatives completed or planned for this product. (previously SC4.2c)

The platform for organizations to measure, exchange, manage, and act on product-level lifecycle environmental data.

Core Functionality

Highlights

Collaborative data exchange platform

Calculate, exchange, act on product-level data

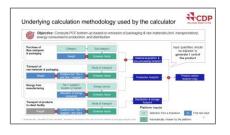
Self-service product emission calculator

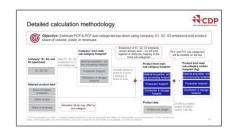
Built in support

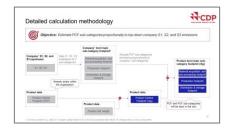
Emission reduction collaboration

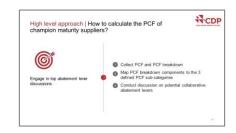
Share roadmap and abatement levers

Don't let perfection get in the way of action




Beginner


Developing


Mature

Leadership

- Studied product cradle-togate info: bills of material, packaging, energy consumed & distribution
- Scope 1,2 & 3 (upstream) footprint
- Required products volume or costs share (revenue share if not available)
- Scope 1,2 & 3 (upstream) footprint
- Studied product PCF

- Studied product PCF
- Product PCF sub-categories breakdown

Output

Use of the self-assessment

PCF bottom-up estimate

PCF sub-categories

breakdown

- PCF top-down estimate
- PCF sub-categories breakdown (if sufficient data granularity)
- PCF sub-categories breakdown (if sufficient data granularity)
- PCF sub-categories breakdown
- PCF CDP module 4 categories breakdown (if relevant1)

calculator feature

6

Common questions

Most questions are around data confidence

- Scope 3 modelling is notoriously hard. The protocol acknowledges this and even gives suggestions to assess and report quality of data
- When using CDP data 3 areas crop up most commonly
- There is no 100% right of wrong answer its mainly about policy decisions.

Table [7.6] Data quality indicators					
Indicator	Description				
Technological representativeness	The degree to which the data set reflects the actual technology(ies) used				
Temporal representativeness	The degree to which the data set reflects the actual time (e.g., year) or age of the activity				
Geographical representativeness	The degree to which the data set reflects the actual geographic location of the activity (e.g., country or site)				
Completeness	The degree to which the data is statistically representative of the relevant activity.				
	Completeness includes the percentage of locations for which data is available and used out of the total number that relate to a specific activity. Completeness also addresses seasonal and other normal fluctuations in data.				
Reliability	The degree to which the sources, data collection methods and verification procedures ² used to obtain the data are dependable.				

Temporal Issues

- CDP data is actually a high grade on temporal ratings.
- The main issue resides in marrying spend within the reporting year to data collected the previous year
- ▼ For PG&S spend tends to be relatively stable allowing for spend information from the reporting year to year old data
- ▼ CG is trickier for YoY comparison

Sc	core	Representativeness to the activity in terms of:					
		Technology	Time	Geography	Completeness	Reliability	
	ery	Data generated using the same technology	Data with less than 3 years of difference	Da from the	Data from all relevant sites over an adequate time period to even out normal fluctuations	Verified ³ data based on measurements ⁴	
Go	ood	Data generated using a similar but different technology	Data with less than 6 years of difference	Data from a similar area	Data from more than 50 percent of sites for an adequate time period to even out normal fluctuations	Verified data partly based on assumptions or non-verified data based on measurements	
Fa	ir	Data generated using a different technology	Data with less than 10 years of difference	Data from a different area	Data from less than 50 percent of sites for an adequate time period to even out normal fluctuations or more than 50 percent of sites but for a shorter time period	Non-verified data partly based on assumptions, or a qualified estimate (e.g. by a sector expert)	
Po	оог	Data where technology is unknown	Data with more than 10 years of difference or the age of the data are unknown	Data from an area that is unknown	Data from less than 50 percent of sites for shorter time period or representativeness is unknown	Non-qualified estimate	

Completeness

DISCLOSURE INSIGHT ACTION

- ▼ For PG&S & CG you must model cradle to gate emissions for all spend (or as close to)
- Using primary data for the first 30-50% spend then modelling to 100% with
 - ▼ CDP averages
 - Input Output / other
 - Rounding up

Score	Representative	Representativeness to the activity in terms of:					
	Technology	Time	Geography	Completeness	Reliability		
Very good	Data generated using the same technology	Data with less than 3 years of difference	Data from the same area	Data from all relevant sites over an adequate time period to even out normal fluctuations	Verified ³ data based on measurements ⁴		
Good	Data generated using a similar but different technology	Data with less than 6 years of difference	Data from a similar are	Data from more than 50 percent of sites for an adequate time period to even out normal fluctuations	Verified data partly based on assumptions or non-verified data based on measurements		
Fair	Data generated using a different technology	Data with less than 10 years of difference	Data from a different area	Data from less than 50 percent of sites for an adequate time period to even out normal fluctuations or more than 50 percent of sites but for a shorter time period	Non-verified data partly based on assumptions, or a qualified estimate (e.g. by a sector expert)		
Poor	Data where technology is unknown	Data with more than 10 years of difference or the age of the data are unknown	Data from an area that is unknown	Data from less than 50 percent of sites for shorter time period or representativeness is unknown	Non-qualified estimate		

Reliability

DISCLOSURE INSIGHT ACTION

- The most common issue
- Which suppliers data to use and which to substitute is a question of comfort
 - More primary data used means more linkage to purchasing process
 - Suppliers make mistakes or misunderstand.

Suppliers have to be assessed 1:1 and most members use a standardized process

core	Representativeness to the activity in terms of:					
	Technology	Time	Geography	Completeness	Reliability	
ery ood	Data generated using the same technology	Data with less than 3 years of difference	Data from the same area	Data from all relevant sites over time perio normal fluctuations	Verified ³ data based on measurements ⁴	
Good	Data generated using a similar but different technology	Data with less than 6 years of difference	Data from a similar area	Data from an 50 percent for an adequat period to even out fluctuations	Verified data partly based on assumptions or non-verified data based on measurements	
Fair	Data generated using a different technology	Data with less than 10 years of difference	Data from a different area	Data from le percent of si percent of si percent of si percent of to even out in hal fluctuations of percent of the shorter time eriod	Non-verified data partly based on assumptions, or a qualified estimate (e.g. by a sector expert)	
oor	Data where technology is unknown	Data with more than 10 years of difference or the age of the data are unknown	Data from an area that is unknown	Data from less than 50 percent of sites for shorter time period or representativeness is unknown	Non-qualified estimate	

Key Takeaways

- Upstream Scope 3 emissions accounting is challenging.
- Different methodologies exist, including hybrid methodologies combining primary data and industry averages.
- Companies should focus on obtaining the best possible estimate based on spend.
- When reporting Scope 3 emissions, clear and transparent disclosure of the methodologies used, and assumptions made is critical.

SUPPLIER QUERIES

For technical issues:

Please use our multi-lingual help center
Where you can find FAQs or

raise a case. Direct link is also available on the CDP Portal.

For technical guidance:

Please register for <u>webinars</u> and check out the CDP's <u>Guidance page</u>

You can learn best practice on the Supplier Support Webinars

Other helpful guidance:

- Standard Standard
- **▼GHG Protocol Calculation**<u>Tools</u>
- CDP CO2Al further information
- CO2AI
- **▼GSMA Scope 3 guidance**

Please post your questions in the Q&A chat

Thank you!

Recording and slide deck will be made available soon