
GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 1 of 90

Rich Communication Suite – End-to-End Encryption
Specification

Version 1.0

28 February 2025

Security Classification: Non-Confidential

Access to and distribution of this document is restricted to the persons permitted by the security classification. This document is subject to

copyright protection. This document is to be used only for the purposes for which it has been supplied and information contained in it must not be

disclosed or in any other way made available, in whole or in part, to persons other than those permitted under the security classification without

the prior written approval of the Association.

Copyright Notice

Copyright © 2025 GSM Association

Disclaimer

The GSMA makes no representation, warranty or undertaking (express or implied) with respect to and does not accept any responsibility for, and

hereby disclaims liability for the accuracy or completeness or timeliness of the information contained in this document. The information contained

in this document may be subject to change without prior notice.

Compliance Notice

The information contain herein is in full compliance with the GSMA Antitrust Compliance Policy.

This Permanent Reference Document is classified by GSMA as an Industry Specification, as such it has been developed and is maintained by

GSMA in accordance with the provisions set out GSMA AA.35 - Procedures for Industry Specifications.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 2 of 90

Table of Contents

1 Introduction 6

1.1 Overview 6

1.2 Scope 6

1.3 Definition of Terms 6

1.4 Abbreviations 9

1.5 Document Cross-References 10

1.6 Conventions 11

2 Architecture 12

3 Identity Model 13

3.1 Client and Participants 13

3.2 Client Certificates 14

3.3 Certificate Signing Model 14

4 Provisioning 15

4.1 ACS Signed Encryption Identity Proof 16

4.2 Enrolment with KDS 16

5 Key Delivery Service (KDS) 17

5.1 Uploading KeyPackages 17

5.2 MLS Capabilities 17

5.3 Fetching Key Packages 17

5.4 KDS Federation 18

5.4.1 Error Handling 19

5.5 Identity Verification 19

6 MLS Conversation Representation 20

6.1 Conversation Management 20

6.1.1 MLS Group Life Cycle 20

6.1.2 Conversation Focus 22

6.1.3 MLS-Opaque-Token Definition 23

6.1.4 Resolving RCS and MLS Identifiers 23

6.2 MLS Group Commit and Proposal Management 23

6.2.1 Commit and Proposal Arbitration 23

6.2.2 Conversation Focus Commit Validation 24

6.2.3 Conversation Focus Proposal Validation 25

6.2.4 Commit/Proposal Message Delivery 25

6.2.5 Signal for Rejected Commits/Proposals/Messages 25

6.2.6 Client Commit and Proposal Validation 26

6.3 MLS GroupInfo Management 27

6.3.1 Retrieving MLS GroupInfo 28

7 Wireformat 29

7.1 MLS Content Types 29

7.2 MLS CPIM Namespace 29

7.2.1 Epoch-Authenticator CPIM header 30

7.2.2 MLS- Derived-Content-Signature CPIM Header 30

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 3 of 90

7.2.3 Original-Message-Id CPIM Header 31

7.2.4 MLS-Opaque-Token SIP Header 31

7.3 Binary Encoding Format 31

7.4 KeyPackage Definition 31

7.5 Encrypted Message Format 31

7.5.1 SecretPayload Definition 32

7.5.2 Application Message Definition 33

7.5.3 AuthenticatedData Definition 33

7.5.4 Re-Sent Message Binary Format 34

7.5.5 Epoch-Authenticator CPIM Header 34

7.5.6 MSRP Message Format 35

7.5.7 Unencrypted CPIM headers 35

7.6 Signed Message 36

7.6.1 Signature Generation 36

7.6.2 Signature Validation 36

7.6.3 VerifiableDerivedContent Format 36

7.7 IMDN Definition 38

7.7.1 Positive-Delivery IMDN Definition 38

7.7.2 Negative-Delivery IMDN Definition 38

7.7.3 Display IMDN Definition 40

7.8 File Transfer Message Definition 41

7.8.1 FileInfo Message 41

7.8.2 File Transfer Message Body 41

7.9 Commit and Proposal Messages 42

7.9.1 message/mls-rcs-client and message/mls-rcs-server ContentTypes 42

7.9.2 Client-Generated Commits 45

7.9.3 Server-Processed Commits 45

7.9.4 Proposal Lists 46

7.10 MLS GroupInfo Retrieval Format 46

7.10.1 SIP Info Response Body 46

7.11 MLS Extensions 46

7.11.1 Era 46

7.11.2 end_mls 47

7.11.3 icon_key 47

7.11.4 icon_commitment 47

7.11.5 subject_key 48

7.11.6 subject_commitment 48

7.11.7 rcs_signature 48

7.11.8 self_remove 48

7.11.9 server_remove 49

7.12 ACS Signed Encryption Identity Proof 49

7.12.1 ACS Signed Encryption Identity Proof Format 49

8 Conversation Creation 49

8.1 Client Procedures 49

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 4 of 90

8.1.1 1-to-1 INVITE 50

8.1.2 Group INVITE 50

8.2 Messaging Server Procedures 50

8.2.1 Conversation Focus 50

8.2.2 Participant Function 51

8.3 Creating a New Era 51

8.3.1 Client Procedures 51

8.3.2 New Conversation Focus 51

8.3.3 Old Conversation Focus 52

8.3.4 Participating Functions 52

9 Conversation Operations 52

9.1 Messaging 52

9.1.1 Encrypted Messages 52

9.1.2 File Transfer 53

9.1.3 Delivery Report 54

9.1.4 Display Report 54

9.1.5 User Alias 54

9.2 Adding Participants to a Group Chat 55

9.3 Removing Participants from a Group Chat 56

9.4 Self Leave 57

9.5 Commits 58

9.5.1 Commit Procedure 58

9.5.2 Key Updates 59

9.5.3 Certificate Update 60

9.5.4 KeyPackage Update 60

9.6 Server-Initiated User Removal 60

9.7 Group Metadata Management 61

9.7.1 Group Icon and Subject 61

10 MLS Group Recovery 63

10.1 Self-Healing Mechanism 63

10.1.1 Self-Heal Procedure 64

10.2 Sending Fail to Decrypt (FTD) 65

10.3 Receiving an FTD message 65

10.4 Receiving a Re-Sent Message 66

10.5 Recovering Group Subject and Icon 67

11 Encryption Status Change 67

11.1 Unencrypted to Encrypted 67

11.1.1 Periodic Capability Refresh for Unencrypted Groups 68

11.1.2 Resurrecting former MLS Group 68

11.2 Encrypted to Unencrypted 68

 Certificate profiles 69

A.1 Root Certificate Profile 69

A.1.1 Version 69

A.1.2 Serial Number 69

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 5 of 90

A.1.3 Signature Algorithm 69

A.1.4 Issuer 69

A.1.5 Validity 69

A.1.6 Subject 69

A.1.7 Subject Public Key 70

A.1.8 Extensions 71

A.2 Intermediate CA Certificate Profile 72

A.2.1 Version 72

A.2.2 Serial Number 72

A.2.3 Signature Algorithm 72

A.2.4 Issuer 72

A.2.5 Validity 72

A.2.6 Subject 72

A.2.7 Subject Public Key 73

A.2.8 Extensions 74

A.3 Client Certificate Profile 75

A.3.1 Version 75

A.3.2 Serial Number 75

A.3.3 Signature Algorithm 75

A.3.4 Issuer 76

A.3.5 Validity 76

A.3.6 Subject 76

A.3.7 Subject Public Key 76

A.3.8 Extensions 77

A.4 Certificate Validation Procedures 80

A.4.1 Client Validation 80

A.4.2 KDS Validation 82

A.4.3 RCS SPN Validation 82

 Inter-KDS Interface 83

 Cryptographic Operations 86

C.1 Creating a Commitment for a Value 86

C.2 Encrypting a File 86

C.3 Decrypting a File 87

C.4 One to one HPKE Encryption for Re-Sent Messages 88

C.4.1 Encryption 88

C.4.2 Decryption 89

C.5 Identity Verification Code 89

 Document Mangement 89

D.1 Document History 89

D.2 Other Information 90

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 6 of 90

1 Introduction

1.1 Overview

End-to-end encryption (E2EE) refers to a generic private communication system in which

only the communicating users can participate. As such, no one else, including the

communication systems provider, telecom providers, internet providers, or malicious actors

can access the cryptographic keys needed to communicate. Functionally, this assures that

messages exchanged using E2EE cannot be read or secretly modified by anyone other than

the intended senders and recipients. The precise definition of E2EE can be found in [IACR

2085]. Any implementation that deviates from the definition is not considered an E2EE

system.

RCS will rely on Messaging Layer Security (MLS) Protocol, which is an IETF specification

[RFC9420], for supporting end-to-end encryption. MLS is a formally verified standard that

guarantees both forward secrecy and post-compromise security for messaging in 1-to-1 and

group conversations. It is designed to scale efficiently with large group chats, and it supports

post-quantum encryption.

E2EE is meant to run on top of RCS networks and clients. While cryptographic material will

be exchanged independent of the RCS system, the encrypted messages and group chats

are transmitted and stored via existing mechanisms as specified in [GSMA PRD-RCC.07].

1.2 Scope

This document defines how to incorporate MLS into RCS (Rich Communication Suite) and

ensure that RCS users can securely exchange messages with one another in both 1-to-1

and group contexts. Note that E2EE only applies to P2P conversations and not Chatbot

conversations.

1.3 Definition of Terms

Term Description

Active

Conversation
A Conversation with at least one User Message in the last 30 days.

Additional

Authenticated

Data

Information that is not encrypted but is bound to the ciphertext in a

cryptographic way, so that a modification of the information renders the

ciphertext invalid.

Application

Message
Message defined by the [GSMA PRD-RCC.07] unrelated to encryption.

Certificate Chain
An ordered list of certificates, from the root certificate to the leaf certificate.

Each certificate is signed by its parent.

Cipher Suite

As defined in [RFC9420].

A Cipher Suite is a combination of a protocol version and the set of

cryptographic algorithms that should be used.

Client

A logical device owned by a Participant; an agent that uses this protocol to

establish a shared cryptographic state with other Clients. A Client is defined

by the cryptographic keys it holds.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 7 of 90

Term Description

Client Certificate
An X.509 representation of the Client. The X.509 certificate is verified by the

KDS. Asserts the Client & Participant’s identity in a given time window.

Client Credential

As defined in [RFC9420].

Each member of a group presents a credential that provides one identity for

the member and associates them with the member's signing key. The

identities and signing key are verified by the KDS in use. In RCS, the Client

Credential contains a Client Certificate.

Commit

As defined in [RFC9420].

A message that implements the changes to the group proposed in a set of

Proposals.

Control Message Message defined by the MLS specification (e.g. Commit, Welcome)

Cryptographic

State

The set of keys and other MLS state required to encrypt, decrypt and sign

messages as well as create and verify Commits.

End-to-End

Encryption (E2EE)

A private communication system in which only communicating users can

participate.

Epoch

As defined in [RFC9420].

A state of a group in which a specific set of authenticated Clients hold shared

cryptographic state.

Epoch

Authenticator
A short cryptographic representation of the state of a given epoch.

Era

An identifier representing a version of the MLS Group within an RCS

conversation. Each new Era creates a new MLS Group with the same Group

Identifier.

External Commit
As defined in [RFC9420].

A commit that is issued by a non-member of the cryptographic group.

External Proposal

As defined in [RFC9420].

A Proposal that is sent by a non-member of the group, particularly by the

server hosting the group.

Foreign KDS A KDS that a client is communicating with through their Home KDS.

Group Context

As defined in [RFC9420].

An object that summarises the shared, public state of the group. The

GroupContext is typically distributed in a signed GroupInfo message, which is

provided to new members to help them join a group.

Group Context

Extensions

As defined in [RFC9420].

Additional application-level entries in GroupContext object.

Home KDS A KDS that a client is directly communicating with.

Home KDS

Interface
Interface between the client and their Home KDS.

Inter-KDS

Interface
Interface between two KDSes that facilitates federation.

Key Delivery

Service (KDS)

A server, provided by the application vendor, responsible for associating,

holding, and distributing a user’s KeyPackage.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 8 of 90

Term Description

KeyPackage

As defined in [RFC9420].

A signed object describing a Client's identity and capabilities, including a

hybrid public key encryption (HPKE) [RFC9180] public key that can be used

to encrypt to that Client. Other clients can use a Client's KeyPackage to

introduce the Client to a new group.

Last Resort

KeyPackage

As defined in [RFC9420].

A reusable (by multiple members) KeyPackage.

Leaf Node

As defined in [RFC9420].

Leaf Node of the MLS Ratchet Tree that describes all the details of an

individual Client's appearance in the MLS Group, signed by that Client.

MLS Control

Message
A CPIM message containing either a Commit or a list of Proposals.

MLS Group

Represents a logical collection of Clients that share a common secret value

at any given time. Its state is represented as a linear sequence of epochs in

which each epoch depends on its predecessor.

MLS Message
A public or private message carrying MLS primitives (PublicMessage or

PrivateMessage).

MLS (Ratchet)

Tree

Represents a current state of an encryption in a given conversation and is

used to distribute encryption keys to group members.

Participant
An entity identified by an RCS primary identifier that logically represents a

single end user.

Plaintext Message A message that is transmitted unencrypted.

Private-IM
An RCS Message sent to a single Participant of the Group. In 1-to-1

messaging, every message is considered a Private-IM.

PrivateMessage

As defined in [RFC9420].

An MLS protocol message that is signed by its sender, authenticated as

coming from a member of the group in a particular epoch, and encrypted so

that it is confidential to the members of the group in that epoch.

Proposal

As defined in [RFC9420].

A message that proposes a change to the group, e.g., adding or removing a

member.

PublicMessage

As defined in [RFC9420].

An MLS protocol message that is signed by its sender and authenticated as

coming from a member of the group in a particular epoch but not encrypted.

RCS Conversation
The RCS representation of 1-to-1 or group conversation, which includes all

the Participants in that conversation.

Signed Encryption

Identity Proof

A signature returned by ACS that proves ownership of MSISDN as well as

the Participant Key and binds them together.

UpdatePath
As defined in [RFC9420].

An MLS procedure to update nodes of the ratchet tree with new secrets.

User Message
A Message containing user content, such as text, files, audio, as opposed to

Control Messages.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 9 of 90

1.4 Abbreviations

Term Description

AAD Additional Authenticated Data

ABNF Augmented Backus-Naur Form

ACS
Auto-Configuration Server = Configuration Server as defined in [GSMA PRD-

RCC.14]

AES-CTR Advanced Encryption Standard using Counter Mode

CA Certificate Authority

CLR Certificate Revocation List

CPIM Common Presence and Instant Messaging

CSPRNG Cryptographically Secure Pseudorandom Number Generator

DBA Doing Business As

E2EE End-to-end encryption

ECDSA Elliptical Curve Digital Signature Algorithm

FTD Fail to decrypt

GUID Globally Unique Identifier

HKDF Hash Key Derivation Function

HKI Home KDS Interface

HMAC Hash-Based Message Authentication Code

HPKE Hybrid Public Key Encryption

IKI Inter-KDS Interface

IMDN Instant Message Disposition Notification

KDS Key Delivery Service

MIME Multipurpose Internet Mail Extension

MLS Messaging Layer Security

mTLS Mutual Transport Layer Security

MSRP Message Session Relay Protocol

NNI Network Interface

NS Name Space

NTP Network Time Protocol

OID Object Identifier

P2P Person to Person (communication)

PRD Permanent Reference Document

RPC Remote Procedure Call

RCS Rich Communication Suite

RCS SPN RCS Service Provider Network

SIP Session Initiation Protocol

UNI User Network Interface

URI Uniform Resource Identifier

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 10 of 90

Term Description

URN Uniform Resource Names

XML Extensible Markup Language

1.5 Document Cross-References

Ref
Document
Number Title

1 [gRPC]
gRPC Remote Procedure Calling

https://grpc.io/

2
[GSMA PRD-

RCC.07]

GSMA PRD RCC.07 Rich Communication Suite - Advanced

Communications Services and Client Specification, Version 15.0, 28

February 2025

http://www.gsma.com/

3
[GSMA PRD-

RCC.11]

GSMA PRD RCC.07 Rich Communication Suite Endorsement of OMA

CPM 2.2 Conversation Functions, Version 13.0, 28 February 2025

http://www.gsma.com/

4
[GSMA PRD-

RCC.14]

GSMA PRD RCC.14 HTTP-Based Service Provider Device

Configuration, Version 11.0, 28 February 2025

http://www.gsma.com/

5
[GSMA PRD-

RCC.71]

GSMA PRD RCC.71 RCS Universal Profile Service Description

Document, Version 3.0, 28 February 2025

http://www.gsma.com/

6 [IACR 2085]
Definition of End-to-end Encryption

https://eprint.iacr.org/2024/2085

7 [ITU-T X.680]
X.680 : Information technology – ASN.1 Specification of basic notations

https://www.itu.int/rec/T-REC-X.680

8 [ITU-T X.690]

X.690 : Information technology - ASN.1 encoding rules: Specification of

Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and

Distinguished Encoding Rules (DER)

https://www.itu.int/rec/T-REC-X.690

9
[NIST SP800-

38A]

Recommendation for Block Cipher Modes of Operation

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-

38a.pdf

10 [PADME]

Reducing Metadata Leakage from Encrypted Files and Communication

with PURBs

https://www.petsymposium.org/2019/files/papers/issue4/popets-2019-

0056.pdf

11 [RFC2119]

“Key words for use in RFCs to Indicate Requirement Levels”, S.

Bradner, March 1997

http://www.ietf.org/rfc/rfc2119.txt

12 [RFC3862]
Common Presence and Instant Messaging (CPIM): Message Format

https://www.rfc-editor.org/rfc/rfc3862.html

13 [RFC3966]
The tel URI for Telephone Numbers

https://www.rfc-editor.org/rfc/rfc3966

https://grpc.io/
http://www.gsma.com/
http://www.gsma.com/
http://www.gsma.com/
http://www.gsma.com/
https://eprint.iacr.org/2024/2085
https://www.itu.int/rec/T-REC-X.680
https://www.itu.int/rec/T-REC-X.690
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38a.pdf
https://www.petsymposium.org/2019/files/papers/issue4/popets-2019-0056.pdf
https://www.petsymposium.org/2019/files/papers/issue4/popets-2019-0056.pdf
http://www.ietf.org/rfc/rfc2119.txt
https://www.rfc-editor.org/rfc/rfc3862.html
https://www.rfc-editor.org/rfc/rfc3966

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 11 of 90

Ref
Document
Number Title

14 [RFC4648]
The Base16, Base32, and Base64 Data Encodings

https://www.rfc-editor.org/rfc/rfc4648.html

15 [RFC5280]

Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile

https://datatracker.ietf.org/doc/html/rfc5280

16 [RFC5438]
Instant Message Disposition Notification (IMDN)

https://www.rfc-editor.org/rfc/rfc5438.html

17 [RFC5869]
HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

https://www.rfc-editor.org/rfc/rfc5869.html

18 [RFC8120]
Mutual Authentication Protocol for HTTP

https://www.rfc-editor.org/rfc/rfc8120.html

19 [RFC8174]
Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

https://www.rfc-editor.org/info/rfc8174

20 [RFC8446]
The Transport Layer Security (TLS) Protocol Version 1.3

https://www.rfc-editor.org/rfc/rfc8446.html

21 [RFC9180]
Hybrid Public Key Encryption

https://www.rfc-editor.org/rfc/rfc9180.html

22 [RFC9420]
The Messaging Layer Security (MLS) Protocol

https://www.rfc-editor.org/rfc/rfc9420.html

23 [RFC9505]
Network Time Protocol Version 4: Protocol and Algorithms Specification

https://www.rfc-editor.org/rfc/rfc5905.html

24 [RFC9562]
Universally Unique IDentifiers (UUIDs)

https://www.rfc-editor.org/rfc/rfc9562.html

1.6 Conventions

The key words “must”, “must not”, “required”, “shall”, “shall not”, “should”, “should not”,

“recommended”, “may”, and “optional” in this document are to be interpreted as described in

[RFC2119] and clarified by [RFC8174].

Throughout this document, Client (with a capital C) refers to the MLS term defined in section

1.3. Specifically, it is the logical representation of a device inside of the MLS Group. When

the term client (with a small c) is used, it refers to the software that is following the

procedures defined in this document, as it would be used in [GSMA PRD-RCC.07].

https://www.rfc-editor.org/rfc/rfc4648.html
https://www.rfc-editor.org/rfc/rfc5438.html
https://www.rfc-editor.org/rfc/rfc5869.html
https://www.rfc-editor.org/rfc/rfc8120.html
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/rfc/rfc8446.html
https://www.rfc-editor.org/rfc/rfc9180.html
https://www.rfc-editor.org/rfc/rfc9420.html
https://www.rfc-editor.org/rfc/rfc5905.html
https://www.rfc-editor.org/rfc/rfc9562.html

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 12 of 90

2 Architecture

Figure 1: Overall Architecture

The E2EE system includes clients and Key Delivery Services (KDSes), which is the store for

all KeyPackages uploaded by clients. The E2EE system lives alongside the RCS Service

Provider Network (RCS SPN). KDSes do not directly communicate with the RCS SPN and

the RCS SPN does not directly communicate with the KDSes. However, primitives

generated from one entity shall be checked by the other.

E2EE is a client feature. Private or symmetric keys used for encryption/decryption are not

stored on any server. Instead, those keys live only on the client. All RCS SPN operations in

this document are meant to assist in improving the reliability of E2EE. Even without any

server assistance, clients will be able to perform all E2EE operations.

To facilitate multiple vendors implementing E2EE, KDSes must be able to federate. Clients

rely on the KDS assigned by their own client provider (called the Home KDS) to fetch all

KeyPackages regardless of where they are stored. The Home KDS shall fetch KeyPackages

from other KDSes (called Foreign KDSes).

The KDS is responsible for:

• Verifying the user identity and the Participant Keys of the client.

• Storing, certifying and delivering KeyPackages.

• Fetching KeyPackages from Foreign KDSes on request from served clients.

Within the context of E2EE, the client is responsible for:

• Generating KeyPackages.

• Encrypting, decrypting, and authenticating operations.

• Modifying the cryptographic state of the MLS Group (which includes changes in MLS

Group membership).

• Verifying Commits sent by other clients and routed via the RCS SPN.

Within the context of E2EE, the RCS SPN is responsible for:

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 13 of 90

• User identity verification.

• Routing messages between clients.

• Arbitration and basic validation of Commits and messages.

• Storing and providing (to clients) the MLS GroupInfo and Epoch Authenticators

(present and past) for all conversations (1-to-1 and group conversations).

Encryption will continue to operate over NNI. The state for each RCS Conversation will be

stored in a single RCS SPN (called Conversation Focus) but can potentially be transferred to

another RCS SPN.

3 Identity Model

3.1 Client and Participants

Participants are individual users, like Alice or Bob. Participants have one or more devices

represented as Clients, like WebApp or phone. RCS Conversations (including both 1-to-1

messaging and group conversations) are associated with MLS Groups. An RCS

Conversation is composed of the Participants, while the MLS Group is composed of the

Clients corresponding to the Participants of the RCS Conversation. The Participants of an

MLS Group is the set of all Participants whose Clients are in the MLS Group. The clients and

the Conversation Focus shall ensure that all of the Participants of the MLS Group match the

Participants of the RCS Conversation at all times.

NOTE: for the initial release of this specification, a Participant has only one Client.

Figure 2: Relationship between Participants and Clients

The Participant is represented by the user identity and the Participant public key. The Client

is represented by the Client Certificate (defined in Annex A.3)

An MLS Group is represented as a binary tree, in which Leaf Nodes contain Client

Certificates to represent Clients (and transitively the Participants of the MLS Group).

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 14 of 90

Figure 3: An MLS Group Ratchet Tree with Three Participants (Alice, Bob, Charlie);

Alice Has Two Clients

3.2 Client Certificates

Client Certificates are issued by the KDS pursuant to section 4.2. Client Certificates are

verified by the Conversation Focus (section A.4.3) and other clients at the time of any

Commits, such as MLS Group membership changes. The Certificate Signing Model (section

3.3) describes how the certificates are authenticated. The Client Certificate shall follow

procedures in Annex A.3.

3.3 Certificate Signing Model

The Certificate Chain is used to establish trust, prevent man-in-the-middle attacks, and

prevent identity spoofing. The Root Certificates of application vendors must meet the

requirements described in Annex A.1. Those vendors are responsible for issuing Client

Certificates. For MLS in RCS to work, all interconnected Client vendors shall agree on the

same set of trusted Root Certificates.

Additional intermediate certificates can be added between the Root and Leaf certificates.

There has to be at least one, but could include multiple intermediates.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 15 of 90

Figure 4: The Certificate Hierarchy

Each Client Certificate contains an assertion from the ACS. The ACS provides an extra

guarantee of MSISDN ownership on top of the guarantees provided by the KDS. Assertions

from both the ACS and KDS regarding phone number ownership must agree. Details are

described in section 6.2.2 and Annex A.3.

Client Certificates are non-revocable. Their lifetime is defined in Annex A.3. Intermediate

CAs are revocable using CRLs defined in the Offline Root.

4 Provisioning

The overall flow of provisioning and enrolling with Home KDS is outlined in the following

figure.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 16 of 90

Figure 5: Provisioning and Enrolment in Home KDS

4.1 ACS Signed Encryption Identity Proof

When provisioning or processing a configuration refresh of the client with ACS, as per

[GSMA PRD-RCC.07], the client shall include the following:

• The Public Participant Key as defined in section 3.1

• The home_kds, an integer indicating the ID of the KDS vendor

Upon verifying the client, ACS shall sign the tuple of (MSISDN, Public Participant Key,

home_kds), including an expiry as defined in section 7.12 and return it in the configuration

document as per [GSMA PRD-RCC.07]. If ACS does not return the Signed Encryption

Identity Proof, the client shall continue with enrolment with the Home KDS.

The ACS shall store the Public Participant Key and the home_kds values. Those values shall

be used to construct the ACS Signed Encryption Identity Proof in future config refreshes.

4.2 Enrolment with KDS

After the provisioning with ACS, the client shall enrol with its Home KDS and upload

KeyPackages as per section 5.1. If ACS returned the Signed Encryption Identity Proof as

specified in section 4.1, the client shall include it in this enrolment request, to be included in

the Client Certificate.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 17 of 90

After completing the enrolment with Home KDS and uploading of KeyPackages, the client

shall register to the RCS SPN as per section 2.4 in [GSMA PRD-RCC.07]. The client shall

also re-add themselves via an External Commit to all MLS Groups they are aware of.

5 Key Delivery Service (KDS)

5.1 Uploading KeyPackages

After receiving the ACS Signed Encryption Identity Proof of (MSISDN, Public Participant

Key, home_kds) during ACS provisioning as per section 4.1, the client shall generate HPKE

key pairs (private and public keys) as per [RFC9420]. The client shall then upload the

required fields to issue certificates as per section A.3 (including Cipher Suite and the ACS

Signed Encryption Identity Proof) during enrolment with the Home KDS. The exact interface

between the client and the KDS is vendor specific.

NOTE: The interface between client and Home KDS may be specified in future releases.

Upon client enrolment, the Home KDS shall verify the end user identity. Upon successful

verification, the Home KDS shall use a globally unique Client ID and issue Client

Certificates, adhering to the certificate format outlined in Annex A.3, for each Client Key. The

Home KDS shall then return these Client Certificates to the client.

NOTE: The Home KDS can choose to do its own verification of the MSISDN or it can use

the ACS Signed Encryption Identity Proof as a verification mechanism.

With the Client Certificate, the client shall create KeyPackages as per [RFC9420] and upload

them to the Home KDS. The lifetime of the KeyPackage must match the lifetime of the Client

Certificate issued by the Home KDS. The Home KDS shall store the KeyPackages to be

fetched by other clients (directly via Home KDS or indirectly via Foreign KDS).

If the initial KeyPackage upload fails for any reason (including retries), the client shall not

advertise MLS capabilities as described in section 5.2.

The KDSes and RCS SPN must maintain accurate clock by utilising Network Time Protocol

(NTP). Clients should also maintain accurate clocks via NTP to validate certificate times.

5.2 MLS Capabilities

To check if MLS is enabled for a recipient client, the sender client shall request their RCS

capabilities through the sender’s RCS SPN that will query the recipient’s RCS SPN. Clients

that support MLS shall include Encryption version (indicating which version of this

specification the client supports) and Encryption Home KDS capability (indicating the

recipient’s Home KDS ID) as specified in [GSMA PRD-RCC.07].

5.3 Fetching Key Packages

To fetch KeyPackages, the client shall request them from their Home KDS. The client shall

list, in order they prefer, the Cipher Suites for encryption, and a list of the recipients (with

their home_kds capability value) to fetch KeyPackages for.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 18 of 90

Upon receiving a KeyPackage request, the Home KDS shall first query the Cipher Suites for

all Participants, and if necessary, federate with other Foreign KDSes. Based on the order

listed in the request, the Home KDS chooses a common Cipher Suite. For example, if the

client listed Cipher Suites a then b then c, some of the Participants were capable of a, and

all were capable of b and c, then the Home KDS shall pick Cipher Suite b as the common

Cipher Suite. If there are no common Cipher Suites, the Home KDS shall return no common

Cipher Suite for all the Participants. The client shall create the group unencrypted.

If the KeyPackages are being fetched for adding users to a group, the client shall request

KeyPackages for the Cipher Suite of the MLS Group. If there are Participants who do not

support the Cipher Suite, the Home KDS shall return no common Cipher Suite. The client

may request KeyPackages for all Participants in the group (existing and added) to achieve a

common Cipher Suite. If a common Cipher Suite is found, the client shall advance the Era

(as per section 8.3) with the common Cipher Suite.

The Home KDS shall then fetch the corresponding KeyPackages for the selected Cipher

Suite from its local store or, if necessary, by federating to other Foreign KDSes as per

section 5.4. The Home KDS shall validate the Client Credentials in the KeyPackages

according to Annex A.4.2. The Home KDS shall then return the KeyPackages for all

recipients.

The Home KDS shall return KeyPackages for all the Clients of the Participant. Clients that

add a Participant to an RCS Conversation must include all Clients in the MLS Group for that

Participant. For example, if a Participant has 3 Clients, the Home KDS shall return

KeyPackages for all 3 Clients. The client shall then include all 3 KeyPackages in the MLS

Group.

If unexpected errors arise during the KeyPackage fetching that are not recoverable by

retrying, the client shall create the RCS Conversation unencrypted.

NOTE: The Home KDS should return results to indicate the specific response status for

each Participant.

The exact interface between clients and their Home KDS is vendor specific.

5.4 KDS Federation

When the Home KDS receives a request for a Participant’s KeyPackages that has a

home_kds parameter other than its own, it shall request the KeyPackages from the Foreign

KDS indicated by the home_kds.

First, the Home KDS shall request the Cipher Suites of the foreign Participants. Then, after

calculating the Cipher Suite as per section 5.3, the Home KDS then shall request

KeyPackages for that Cipher Suite from the Foreign KDS.

When a new (i.e. previously unknown) Participant enrols on a Home KDS, the Home KDS

should inform all Foreign KDSes of the new enrolment using the

NotifyParticipantRegistration RPC. Upon receiving this notification, a Foreign KDS

should remove the Participant from its storage and should inform the previous device about

the transfer of the Participant to the new device.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 19 of 90

If the notification’s enrolment timestamp for a Participant is before the Foreign KDS’s

enrolment time for the same Participant, the Foreign KDS may ignore the notification and

inform the Home KDS that it ignored the notification via a NEWER_ENROLMENT_EXISTS

error.

The Inter-KDS Interface (IKI) shall use gRPC [gRPC]. Besides the authentication supplied in

gRPC, the federated KDSes shall authenticate with mTLS. Federated KDSes shall use

native gRPC errors for indicating overall RPC error. In case there are partial errors, the

Home KDS shall return those partial errors as specified in the interface definition.

In case the Foreign KDS cannot be reached, the Home KDS shall not return any

KeyPackages for any Participant. The Home KDS shall return a “currently unavailable” error

for all Participants that belong to the unreachable Foreign KDS and a success return status

for other Participants. The client may retry the request or may create the RCS Conversation

unencrypted.

The IKI is defined in Annex B.

5.4.1 Error Handling

When receiving a response from a Foreign KDS, each Participant must contain a

ResponseStatus that indicates the success of each operation. They are:

• UNKNOWN_STATUS: this error shall not be used.

• OK: The query has succeeded and the value is returned.

• NOT_FOUND: The Participant queried was not found in the Foreign KDS. The Home

KDS and client should consider the Participant unable to encrypt. The client may retry

capabilities to update the home_kds of the Participant and retry the query.

• MALFORMED_ID: The E.164 of the phone number was not properly formatted. The

number must be properly formatted before retyring the query.

• UNSUPPORTED_CIPHER_SUITE: The Participant does not have a KeyPackage in the

requested Cipher Suite. The Home KDS must choose a different Cipher Suite or

consider the Participant not capable of E2EE.

• NEWER_ENROLMENT_EXISTS: The Participant enrolled on the Foreign KDS with a

newer timestamp than the one in the request.

5.5 Identity Verification

The clients shall allow users to verify the identity of the users they are communicating with.

The identity verification happens between a pair of users. The identity verification code

between the pair of users applies to all conversations they are part of.

To verify user identity for another user, the client shall:

• Calculate the identity verification code as per Annex C.5.

• Display the 80 digits to the user to allow the pair of users to compare them.

The clients may use a QR code to make the comparison easier. If done so, the client shall:

• Calculate the identity verification code as per Annex C.5.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 20 of 90

• Convert the 80 digits to binary representation.

• Embed the binary representation in a QR code.

• Display the QR Code to the user to allow comparison.

6 MLS Conversation Representation

6.1 Conversation Management

6.1.1 MLS Group Life Cycle

Each MLS Group is identified by a unique identifier, the MLS Group Id. For 1-to-1 chats, the

MLS Group Id will be a random GUID. For group chats, the MLS Group Id shall be the

Conversation Id.

Under certain error conditions, the cryptographic state for an MLS Group may need to be

recreated from scratch. This process preserves the MLS Group Id but changes the

associated Era Identifier. This numeric identifier shall sequentially increase over the lifetime

of the group whenever the Era is advanced.

Within an individual Era, Participants in an MLS Group may modify the group’s state by

sending Commit messages. These special MLS protocol messages contain an intent to

update some aspect of the group. When clients receive a Commit message, they shall

update their local MLS Group state to reflect the change.

Figure 6: Using Commit Messages to Update the Local MLS Group State

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 21 of 90

Clients may also send Proposal messages to update the MLS Group’s state. Like Commits,

Proposal messages also communicate an intended change to the MLS Group, but in order

for that change to be applied, the Proposal must be used to build a new Commit message

that contains it.

Figure 7: Using Proposal Messages to Update the Local MLS Group State

Commit messages contain an Epoch Identifier that indicates which state, or “Epoch”, the

MLS Group is transitioning from. Epochs shall advance sequentially, and must be applied

atomically. Thus, if an MLS Group is currently in Epoch n, the only Commit that can be

applied is one that advances the group to Epoch n+1, and such a Commit shall only be

applied once. The very first Epoch in Era for an MLS Group is 0, and the initial Commit to

create the RCS Conversation and add the members moves it to Epoch 1.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 22 of 90

When receiving a new Commit, clients shall keep the secrets of the previous Epoch for

decrypting messages for at least 3 days to ensure any messages that arrive for previous

Epochs can be decrypted.

Figure 8: Progression of Epochs Within MLS Group Eras

To ensure that all Clients in an MLS Group have the same view of the Group, Messaging

Servers shall arbitrate all incoming Proposal and Commit messages.

6.1.2 Conversation Focus

RCS Conversations using MLS shall be managed by one Messaging Server within the

lifetime of a single Era. Between Eras the ownership may change.

The Messaging Server that processes the MLS Group Creation request for an Era shall be

the Conversation Focus for the group in that Era.

The Conversation Focus must handle all state management for the Conversation. This

includes:

• Arbitrating and validating Commit and Proposal messages.

• Managing and delivering MLS Group state.

• Ensuring that MLS Group state and RCS Conversation state remain in sync only

when the end_mls tag is not present in the MLS Group.

• Storing and forwarding MLS Control and Application Messages to their intended

destinations.

• Deleting the MLS Group after a configurable time, recommended to be 30 days of

inactivity.

Messaging Servers that receive requests destined to an MLS Group that is managed by a
different Messaging Server shall forward the requests to that server. Similarly, if a
Messaging Server receives requests that were sent from an MLS Group managed by a
different server, it shall forward the requests to its own users.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 23 of 90

6.1.3 MLS-Opaque-Token Definition

The MLS-Opaque-Token SIP header allows Messaging Servers to embed MLS information

(especially to identify the Conversation Focus) in the requests that they send to clients or to

other Messaging Servers.

When an RCS Conversation is first created, Messaging Servers may communicate an MLS-

Opaque-Token to both the conversation creator and all participants. If the MLS-Opaque-

Token is present, clients must then include this MLS-Opaque-Token in any subsequent SIP

requests that they generate for that conversation.

If clients receive a new MLS-Opaque-Token in SIP requests sent within the same RCS

Conversation, then any new requests they send must include the updated MLS-Opaque-

Token.

When the participants of an RCS Conversation span multiple RCS SPNs, the Participating

Functions must use the MLS-Opaque-Token if supplied by the Conversation Focus in all

SIP requests directed to that Conversation Focus.

Figure 9: Use of MLS-Opaque-Token in RCS Conversations with Multiple RCS SPNs

6.1.4 Resolving RCS and MLS Identifiers

All RCS Conversations using MLS will continue to be addressed using their primary RCS

identifiers. Specifically, requests sent in RCS Conversations using MLS will continue to be

addressed to the same Request-URIs as specified in [GSMA PRD-RCC.07].

6.2 MLS Group Commit and Proposal Management

6.2.1 Commit and Proposal Arbitration

To ensure that all Participants have the same view of the MLS Group, MLS Conversation

Focuses for a given MLS Group must validate, arbitrate, and order Commit and Proposal

messages.

For a given MLS Group in a given Era, the Conversation Focus shall:

1. Verify that Commits adhere to the rules of Section 6.2.2.

2. Verify that Proposals adhere to the rules of Section 6.2.3.

3. Verify that newly created MLS Groups start at Epoch 0.

4. Accept exactly one Commit in each Epoch.

5. Accept only Proposals from a single user in each Epoch.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 24 of 90

6. If any Proposals have been accepted in an Epoch, only accept Commit messages that

contains all of the Proposals for that Epoch.

7. Only accept Commits and Proposals that advance the Epoch by exactly one.

8. Deliver accepted Commits and Proposals, as described in Section 6.2.4.

9. Explicitly inform the Client when Commits or Proposals are rejected to allow for optional

resubmission as described in Section 6.2.5.

10. Store the MLS GroupInfo derived from all accepted Commits as described in Section

6.3.

6.2.2 Conversation Focus Commit Validation

To ensure that all Commits are valid, and to ensure that MLS Group state stays in sync with

RCS Conversation state, the Conversation Focus shall verify, upon receiving a Commit

message:

1. The Credential is Valid using the procedures defined in [RFC9420].

2. The Commit is Valid using the procedures defined in [RFC9420].

3. That if the MLS Context Extension in the stored MLS GroupInfo includes an end_mls

tag as defined in section 11.2, the Commit is an initial Commit or a Commit that contains

a removal of the end_mls GroupContext Extension as defined in section 7.11.2.2.

4. The Commit message is parsable according to the rules of [RFC9420].

5. The GroupInfo is parsable according to the rules of [RFC9420].

6. That if a new Credential is being introduced to the MLS Group, the certificates in the

Credential are not expired.

7. That if the Era is being advanced for a Group whose Conversation Focus matches that

of the previous Era, the membership of the MLS Group in the new Era matches the

membership of the existing RCS Conversation.

8. That if a Participant is being added to the RCS Conversation, and the end_mls tag is

not present in the MLS Group, at least one Client of the Participant is added to the

corresponding MLS Group.

9. That if a Client is being added to the MLS Group, the identity of the Client’s

corresponding Participant must also be present in the associated RCS Conversation,

or they must be added in the request that contained the Commit.

10. That if the final Client of a Participant is being removed from the MLS Group, the

Participant must not be present in the associated RCS Conversation, or the Participant

must be removed in the request that contained the Commit.

11. That if a Participant is being removed from an RCS Conversation, and the end_mls

tag is not present in the MLS Group, all of the Clients of that Participant are also

removed from the MLS Group in the Commit or Proposals contained within that

request.

12. The Signatures in the Commit and GroupInfo are correct according to [RFC9420].

13. The Commit has the proper structure, given the group’s Ratchet Tree and the position

of the committer in the Tree.

14. The new LeafNode in the Commit is valid, and the contained Certificate is not expired.

15. The GroupContext includes all of the required GroupContext Extensions as described

in Section 7.11.1.1.

16. The Commit’s PublicMessage and the GroupInfo have the same confirmation_tag.

17. All Certificates in the MLS Group are valid for at least 30 days.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 25 of 90

18. Each Participant in the MLS Group has exactly one Participant Key. That is, all Clients

for the same Participant must share the same Participant Key.

19. That if the Commit is an External one, the new Client must belong to a Participant that

is already in the MLS Group.

20. All Client Certificates in the MLS Group are valid according to the validation rules in

Annex A.4.3.

6.2.3 Conversation Focus Proposal Validation

To ensure that all Proposals are valid, and that Clients will be able to generate a Commit

that contains them, the Conversation Focus shall verify that:

1. The Proposal is parsable and valid according to the rules of [RFC9420].

2. The Proposal is either a Remove or Update Proposal.

For Remove Proposals, the Conversation Focus shall verify that:

1. The Proposals in the Epoch include all of the Clients for the Participant being removed.

2. All (and only) the Clients of the Participant sending the Remove Proposal are being

removed. No Clients of any other Participant are to be removed.

For Update Proposals, the Conversation Focus shall verify:

1. The Leaf Node in the Proposal according to the rules of [RFC9420].

2. That the new Leaf Node’s Credential matches the old Leaf’s Credential (Certificate,

Subject, Public Key).

3. That the signature_key matches the Credential Key contained within the Leaf Node.

6.2.4 Commit/Proposal Message Delivery

If a Conversation Focus accepts a Commit or Proposal message within an RCS

Conversation, then it shall deliver the contents of the message to each Participant within the

RCS Conversation, including the sender.

6.2.5 Signal for Rejected Commits/Proposals/Messages

If the Conversation Focus for an RCS Conversation rejects a Commit or Proposal, then it

must explicitly inform the sender that the Commit, Proposal, or Message was rejected. In

addition, if the Commit or Proposal was included as part of an operation that affected the

RCS Conversation state (e.g. adding a user to an RCS group or kicking a user from an RCS

group), then that operation must not be applied.

To achieve this, the Conversation Focus shall send a Negative-Delivery IMDN notification to

the sender of the rejected Commit/Proposal message. This notification must include the

<mls-server-failure-reason> extension within the <delivery-notification> to communicate the

reason for rejection.

The <mls-server-failure-reason> (as defined in section 7.7.2.1) shall contain:

• The latest Era and Epoch for the associated MLS Group.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 26 of 90

• The strategy that the Client should apply in order to re-attempt sending the Commit.

This includes:

o <incorrect-era>: The Client attempted to send a Commit in an Era that did

not match the latest one on the Conversation Focus. The Client must wait to

receive the latest MLS Group state before re-attempting.

o <incorrect-epoch>: The Client attempted to send a Commit in the latest Era,

but the Epoch did not match the latest one on the Conversation Focus. The Client

must wait to receive the latest MLS Group state before re-attempting.

o <incorrect-epoch-authenticator>: The Commit or Message contained an

invalid epoch_authenticator which did not match the

epoch_authenticator persisted by the Conversation Focus. The Client should

attempt self-healing as per section 10.1, and should otherwise advance the Era as

per section 8.3.

o <expired-credential>: The Client attempted to send a Commit that included

a new LeafNode with a Certificate that was expired, or the client attempted to

send a Commit/Proposal/Message when an Expired Credential existed in the MLS

Group. The Client must request a fresh KeyPackage of the Clients with expired

Credential and Commit the new leaf update before re-attempting, as per section

9.5.4.

o <mismatched-rcs-group-state>: The Client attempted to send a Commit for

which the change to the MLS Group state was not reflected in the associated

change to the RCS Conversation state. The Client may recreate and send the

Commit after correcting this discrepancy.

o <unparsable-commit>: The Client attempted to send a Commit that was

unparsable. The Client shall not resend this Commit but may recover by

recreating it and resending.

o <mismatched-confirmation-tag>: The Client attempted to send a Commit

whose confirmation_tag did not match the confirmation_tag of the

persisted MLS GroupInfo. The Client should attempt self-healing as per Section

10.1 and should otherwise advance the Era as per section 8.3.

o <pending-proposal>: The Client attempted to send a Commit that did not

include the pending Proposal. The Client shall include the Proposal in the Commit

and retry the operation.

o <transient-error>: The Client attempted to send a Commit whose

processing failed transiently on the RCS SPN. They may retry the creation and

sending of the Commit.

o <encryption-not-available>: The recipient is not capable of encryption and

thus cannot receive encrypted messages. The sender can either move the

conversation to unencrypted, or remove the recipient.

o <invalid-commit>: The Commit failed to be validated. The client shall fix

validation errors and try again.

6.2.6 Client Commit and Proposal Validation

When Clients receive a message containing a Commit or Proposal, they shall:

1. Validate the Commit as per section 6.2.2 or the Proposal as per section 6.2.3.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 27 of 90

2. Validate that any Commits (other than External Commits) were sent by a Client of the

MLS Group.

3. Validate that any Proposals were sent by a member of the MLS Group.

4. Follow the Credential Validation procedures defined in [RFC9420] and Annex A.4.1.

5. Follow the Commit Validation procedures defined in [RFC9420].

If the Client receives a Commit or Proposal message that fails validation, the Client shall

attempt to initiate a Self-Heal as per section 10.1. If the validation failure persists, they must

generate a Negative-Delivery IMDN notification and send it to the originator of the rejected

message. Then the Client should recreate the MLS Group and and advance the Era as per

section 8.3.

The negative delivery IMDN should encode a <mls-client-failure-reason> within the

<delivery-notification>.

This <mls-client-failure-reason> (as per section 7.7.2.2) shall contain:

• The latest Era and Epoch of the MLS Group from the perspective of the Client.

• A signature that asserts that the sender of the failed IMDN is actually a member of

the MLS Group.

• An indicator of why the message was rejected. This will include:

o <message-from-non-member>: The message was sent from a user that wasn’t

a member of the underlying MLS Group.

o <invalid-credential>: The Commit contained an invalid Credential. The

client shall fetch a new KeyPackage for the Participant(s) and replace their Leaf

Node(s) as per section 9.5.4.

o <invalid-commit>: The Commit failed to be validated. The client shall fix

validation errors and try again.

o <failed-to-decrypt>: The recipient failed to decrypt the message. The

sender shall advance to the latest epoch and resend the message.

o <commit-in-privatemessage>: The sender included a commit in a Private

Message instead of a Public Message. The sender must resend the Commit in a

Public Message and send it again.

6.3 MLS GroupInfo Management

On behalf of each RCS Conversation, the Conversation Focus shall store the latest MLS

GroupInfo associated with the conversation.

For the latest Era for a given RCS Conversation, the Conversation Focus shall store the

epoch_authenticator for each Epoch that the MLS Group has advanced to.

Whenever a Conversation Focus accepts a Commit, it shall store the MLS GroupInfo and

epoch_authenticator included with the Commit.

The persisted GroupInfo shall be exposed to members of the RCS Conversation for retrieval

as per 6.3.1.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 28 of 90

The persisted epoch_authenticator shall be used by the Conversation Focus to ensure

that Clients sending PrivateMessages exchanged in the Conversation have persisted a valid

GroupInfo locally.

6.3.1 Retrieving MLS GroupInfo

Conversation Focus shall allow Clients to retrieve the MLS GroupInfo associated with their

RCS Conversations on demand.

To request the MLS GroupInfo associated with an RCS Conversation, Clients shall send a

SIP INFO for the “MLS-Group-Info-Pull” Info-Package in the INVITE dialog associated with

the RCS Conversation that they wish to request the state for. If they do not have an active

INVITE session for the RCS Conversation when they wish to retrieve this state, they shall

first create one.

Upon receiving this INFO request, the Conversation Focus shall:

• Generate a 469 (Bad Info Package) response if the RCS Conversation is not

associated with an MLS Group.

• Generate a 200 OK response if the RCS Conversation is associated with an MLS

Group.

The Conversation Focus shall embed the latest MLS GroupInfo for the RCS Conversation in

the body of any 200 OK responses to MLS-Group-Info-Pull INFO requests.

6.3.1.1 Communicating Support for MLS GroupInfo

Whenever Messaging Servers send an INVITE request or response for an RCS

Conversation using MLS, they must indicate that the associated INVITE dialog supports the

MLS GroupInfo pull exchange.

To do so, they shall ensure that these requests and responses contain a Recv-Info header

containing the “MLS-Group-Info-Pull” value.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 29 of 90

Figure 10: Recv-Info Header Signals MLS-Group-Info-Pull Support

7 Wireformat

7.1 MLS Content Types

Two new content types are defined for MLS in the following table:

Content-Type Specification Included Message

message/mls [RFC9420] MlsMessage

message/mls-rcs-client [RCC.16] Control Messages

defined in section 7.9.1

message/mls-rcs-server [RCC.16] Control Messages

defined in section 7.9.1

Table 1: MLS Content Types

7.2 MLS CPIM Namespace

A new CPIM namespace is defined for new MLS-related CPIM headers.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 30 of 90

As per CPIM [RFC3862], this specification defines a new namespace for the CPIM extension

header fields defined in the following sections.

The namespace is:

<http://www.gsma.com/rcs/mls>

As per CPIM [RFC3862] requirements, the new header fields defined in the following

sections are prepended, in CPIM messages, by a prefix assigned to the URN through the

NS header field of the CPIM message.

The remainder of this specification always assumes an NS header field like this one:

NS: mls <http://www.gsma.com/rcs/mls/>

As specified in [RFC5438], clients are free to use any namespace prefix, while servers and

intermediaries must accept any legal namespace prefix specification.

7.2.1 Epoch-Authenticator CPIM header

The header is defined as an extension to the [RFC3862] field definitions. The limits for the

occurrence of the field are defined in the following table:

Field Min Number Max Number

Epoch-Authenticator 0 1

Table 2: Epoch-Authenticator CPIM Header

The field itself is defined in ABNF as follows:

Base-64-char = ALPHA / DIGIT / “+“ / “/” / “=”

epoch-authenticator = “Epoch-Authenticator:” epoch-authenticator-

value CRLF

epoch-authenticator-value = 1*base-64-char

An example CPIM header is mls.Epoch-Authenticator: MTIzNDU=.

7.2.2 MLS- Derived-Content-Signature CPIM Header

The header is defined as an extension to the [RFC3862] field definitions. The limits for the

occurrence of the field are defined in the following table:

Field Min Number Max Number

MLS-Derived-Content-Signature 0 1

Table 3: MLS- Derived-Content-Signature CPIM

Header

The field itself is defined in ABNF as follows:

Base-64-char = ALPHA / DIGIT / “+“ / “/” / “=”

mls-derived-content-signature = “MLS-Derived-Content-Signature:” mls-

derived-content-signature-value CRLF

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 31 of 90

mls-derived-content-signature-value = 1*base-64-char

An example CPIM header is mls.mls-derived-content-signature: MTIzNDU=.

7.2.3 Original-Message-Id CPIM Header

The header is defined as an extension to the [RFC3862] field definitions. The limits for the

occurrence of the field are defined in the following table:

Field Min Number Max Number

Original-Message-Id 0 1

Table 4: Original-Message-Id CPIM Header

The field itself is defined in ABNF as follows:

Base-64-char = ALPHA / DIGIT / “+“ / “/” / “=”

Original-message-id = “Original-Message-Id” : original-message-id

CRLF

 Original-message-id = Token

An example CPIM header is mls.Original-Message-Id: 34jk324j

7.2.4 MLS-Opaque-Token SIP Header

The MLS-Opaque-Token SIP header is defined in ABNF as follows:

mls-opaque-token = “MLS-Opaque-Token:” mls-opaque-token-value CRLF

mls-opaque-token-value = 1*(alphanum / "." / "!" / "%" / "*" / "_" / "+" /

"`" / "'" / "~")

7.3 Binary Encoding Format

All binary formats defined by this specification use the TLS representation language format

introduced in [RFC8446].

They also use the variable length encoding scheme and optional fields introduced by

[RFC9420].

7.4 KeyPackage Definition

KeyPackages uploaded by clients shall:

• Be represented as message/mls Messages containing a KeyPackage prescribed by

[RFC9420].

o Include a Certificate in the format described by Annex A.3.

o Include a Certificate whose expiry is valid according to Annex A.3.

7.5 Encrypted Message Format

To construct an Encrypted Message, the client shall:

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 32 of 90

• Construct a SecretPayload Message (as per section 7.5.1).

• Encrypt the SecretPayload Message and embed that in a PrivateMessage (as per

section 7.5.2).

• Include the AuthenticatedData in the PrivateMessage (as per section 7.5.3).

• Create the Epoch-Authenticator CPIM header (as per section 7.5.5).

• Assemble the PrivateMessage in a CPIM container (with the Epoch-Authenticator

CPIM header) and embed that into an MSRP Message (as per section 7.5.6).

The end result shall look like Figure 11.

Figure 11: Wireformat for EncryptedMessage

7.5.1 SecretPayload Definition

SecretPayload objects are constructed from the contents of a CPIM Message that a client

wishes to encrypt.

To Construct a SecretPayload (format defined in section 7.5.1.1), the client shall:

• Construct a CPIM message as per [GSMA PRD-RCC.07] with:

o All CPIM namespaces not equal to <urn:ietf:params:imdn>

o CPIM headers (which are not in the list of Unencrypted CPIM headers from

section 7.5.7)

o MIME Body

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 33 of 90

• Include the CPIM message in the payload field of the SecretPayload.

• Include the version in the SecretPayloadVersion.

• Include the SecretPayloadType:

o hpke_1_to_1_message for Re-Sent Messages as per section 10.3.

o application for any other message.

7.5.1.1 SecretPayload Binary Format

enum {

 reserved(0),

 v1(1),

 (65535)

} SecretPayloadVersion;

enum {

 reserved(0),

 // normal application message

 application(1),

 // resent message after receiving FTD

 hpke_1_to_1_message(2),

 (65535)

} SecretPayloadType;

struct {

 SecretPayloadVersion version = v1;

 SecretPayloadType type;

 // Contents of a CPIM message.

 opaque payload<V>;

} SecretPayload;

7.5.2 Application Message Definition

Once a SecretPayload is constructed, to create a PrivateMessage with a ContentType of

“application” as per [RFC9420], clients shall:

• Encrypt the SecretPayload as per [RFC9420] to generate a ciphertext.

• Create an authenticated_data containing a binary encoded AuthenticatedData

whose format is defined in section 7.5.3.2.

• Create an MLS PrivateMessage with those fields according to the rules of [RFC9420].

• Embed the MLS PrivateMessage in an MlsMessage as per [RFC9420].

7.5.3 AuthenticatedData Definition

The authenticated_data field within PrivateMessages can be used to ensure that a

selected portion of the public content in the CpimMessage is not modifiable by anyone other

than the sender.

All public information that needs to be authenticated in this manner shall be encoded within

the AuthenticatedData struct.

To construct an AuthenticatedData (as defined in section 7.5.3.2), the client shall:

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 34 of 90

• Include the value of the CPIM IMDN Message-Id header of the message being sent in

the message_id field.

• Include the version of the AuthenticatedData being encoded in the

AuthenticatedDataVersion field.

7.5.3.1 AuthenticatedData Validation

When Clients receive Encrypted Messages, they shall validate the authenticated_data

field according to the rules of [RFC9420].

In addition, they shall also ensure that the Message-Id encoded within the

AuthenticatedData parsed from the verified authenticated_data matches the Message-

Id of the CPIM message that the encrypted message was delivered in.

7.5.3.2 AuthenticatedData Binary Format

enum {

 reserved(0),

 v1(1),

 (65535)

} AuthenticatedDataVersion;

struct {

 AuthenticatedDataVersion version = v1;

 // Message-Id value. Encoded in UTF-8.

 opaque message_id<V>;

 // Original-Message-Id value. Encoded in UTF-8.

 opaque original_message_id<V>;

} AuthenticatedData;

7.5.4 Re-Sent Message Binary Format

Struct {

 opaque original_message<V>;

 // Padding for message of length (Original Message)

 opaque padding<V>;

} ResentMessage;

The type field in the SecretPayload struct is set to hpke_1_to_1_message.

7.5.5 Epoch-Authenticator CPIM Header

The Epoch-Authenticator CPIM header is defined in the mls.gsma.com namespace.

This header shall be in all CPIM messages that contain either of the following:

• An Encrypted Message payload (including partially encrypted messages like File

Transfers)

• An MLS Control Message payload

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 35 of 90

This header shall contain a Base64 encoded epoch_authenticator that has been

derived from the epoch and MLS Group in whose context the message has been sent as per

[RFC9420].

7.5.6 MSRP Message Format

Once the MlsMessage that contains the PrivateMessage (as per section 7.5.2) and the

Epoch-Authenticator CPIM Header (as per section 7.5.5) are constructed, the client can

construct an MSRP Message. The client shall:

• Construct a CPIM Message as per [GSMA PRD-RCC.07] with a MIME Content-Type

of message/mls:

o The body of the CPIM Message will be a binary encoded MlsMessage.

o Include only the headers explicitly specified in section 7.5.7.

o Include only the <urn:ietf:params:imdn>, <http://www.gsma.com/rcs> and

<http://www.gsma.com/rcs/mls> namespaces.

o Include a Disposition-Notification header that contains at least the “negative-

delivery” enum, in addition to the ones defined in [GSMA PRD-RCC.07].

o Include the Epoch-Authenticator CPIM header (from section 7.5.5) and its value.

• Include the CPIM Message in an MSRP Body as per [GSMA PRD-RCC.07]

7.5.7 Unencrypted CPIM headers

All headers other than the following shall be encrypted. If a namespace is not specified, then

it should be assumed that the Header is in the default namespace.

• Default namespace:

o To

o From

o DateTime

o Require

• IMDN <urn:ietf:params:imdn> namespace:

o Message-ID

o Disposition-Notification

o Original-To

o IMDN-Record-Route

o IMDN-Route

• RCS <http://www.gsma.com/rcs> namespace:

o advised-action

o source

• MLS <http://www.gsma.com/rcs/mls> namespace:

o Epoch-Authenticator

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 36 of 90

7.6 Signed Message

Messages whose contents are not encrypted may be signed. This signature can be used by

recipients to assert the authenticity of the sender and to allow recipients to assert that the

contents of the message have not been modified since the message was sent.

Only specific message types may be signed. These include:

• Delivery and Display IMDNs

• Client-generated Negative-Delivery IMDNs

• File Transfer Messages

The derivation of exactly what content is to be signed is specific to the type of message

being signed.

7.6.1 Signature Generation

In order to generate a signature, clients shall:

• Generate a VerifiableDerivedContent (as defined in section 7.6.3) from the contents

of the CPIM message that they wish to send.

• Create a FramedContent as per [RFC9420] with the authenticated_data set to

the VerifiableDerivedContents.

• Generate an MLS Public Message which was built using the created FramedContent

as per [RFC9420]. The Public Message shall have the proposal type

rcs_signature as per section 7.11.7.1.

• Encode in Base64 the generated binary MLS Public Message.

• Add this Base64 String to the CPIM MLS-Derived-Content-Signature header.

7.6.2 Signature Validation

In order to validate the signature of a message that included an MLS-Derived-Content-

Signature header, clients shall:

• Base64 Decode the MLS-Derived-Content-Signature CPIM header.

• Parse the sequence of bytes as an MLS Public Message.

• Verify that the MLS Public Message was sent by a valid member of the group as per

[RFC9420].

• Generate a VerifiableDerivedContent from the contents of the CPIM message.

• Ensure that this VerifiableDerivedContent matches the VerifiableDerivedContent

included in the FramedContent of the PublicMessage.

• Verify the signature in the FramedContentAuthData as per [RFC9420].

7.6.3 VerifiableDerivedContent Format

7.6.3.1 VerifiableDerivedContentVersion

The VerifiableDerivedContentVersion is an enum identifying the version of the struct. It is

used across all VerifiableDerivedContent.

enum {

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 37 of 90

 reserved(0),

 v1(1),

 (65535)

} VerifiableDerivedContentVersion;

7.6.3.2 Delivery IMDN VerifiableDerivedContent Format

VerifiableDerivedContent is structured in the same way for Positive- and Negative-Delivery

IMDNs.

The format of the VerifiableDerivedContent for Delivery IMDNs is the following:

enum {

 reserved(0),

 delivered(1),

 failed(2),

 forbidden(3),

 error(4),

 (65535)

} DeliveryNotificationStatus;

enum {

 unset(0),

 message_from_non_member (1),

 invalid_credential(2),

 invalid_commit(3),

 failure_to_decrypt(4),

 commit_in_privatemessage(5),

 (65535)

} MlsClientFailureReason;

struct {

 VerifiableDerivedContentVersion version = v1;

 // Value of the <imdn><delivery-notification><status>.

 DeliveryNotificationStatus delivery_notification_status;

 // Message-Id derived from <imdn><message-id> element.

 // Encoded in UTF-8.

 opaque message_id<V>;

 // Value of the <imdn><delivery-notification>

 // <mls-client-failure-reason><status> element.

 // May be empty for a message that was delivered.

 MlsClientFailureReason mls_client_failure_reason;

} VerifiableDeliveryImdn;

7.6.3.3 Display IMDN VerifiableDerivedContent Format

The format of the VerifiableDerivedContent for Display IMDNs is the following:

enum {

 reserved(0),

 displayed(1),

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 38 of 90

 forbidden(2),

 error(3),

 (65535)

} DisplayNotificationStatus;

struct {

 VerifiableDerivedContentVersion version = v1;

 // Value of the <imdn><delivery-notification><status>.

 DisplayNotificationStatus display_notification_status;

 // Message-Id derived from <imdn><message-id> element.

 // Encoded in UTF-8.

 opaque message_id<V>;

} VerifiableDisplayImdn;

7.6.3.4 File Transfer VerifiableDerivedContent Format

The format of the VerifiableDerivedContent for File Transfers is the following:

struct {

 VerifiableDerivedContentVersion version = v1;

 // Message-Id of enclosing message. Encoded in UTF-8.

 opaque message_id<V>;

} VerifiableFileTransfer;

7.7 IMDN Definition

7.7.1 Positive-Delivery IMDN Definition

Positive-Delivery IMDNs are to be sent as Signed Messages which contain a

message/imdn+xml Body with a <delivery-notification><status> element set to “delivered”.

When the Positive-Delivery is for a Re-Sent Message, the client shall include the Re-Sent

Message ID (instead of the original Message ID) in the <imdn><message-id> element. The

client shall include the original Message ID in the Original-Message-Id header as defined in

section 7.2.3.

7.7.2 Negative-Delivery IMDN Definition

7.7.2.1 Server-Generated Negative-Delivery IMDN

Server-generated Negative-Delivery IMDNs shall be used to communicate errors as per

section 6. Server shall not send Negative-Delivery IMDNs in any other contexts.

Server-generated Negative-Delivery IMDNs shall be sent as regular CPIM messages which

contain a message/imdn+xml Body with a <delivery-notification><status>

element set to “failed”.

The <delivery-notification> element shall also contain a new <mls-server-

failure-reason> element.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 39 of 90

The XML format of the server-generated Negative-Delivery IMDN shall follow the XML

schema defined in section 7.7.2.3.

7.7.2.2 Client-Generated Negative-Delivery IMDN

Client-generated Negative-Delivery IMDNs shall be used to communicate that:

• The decryption of an Encrypted Message failed.

• The verification of a Signed Message failed.

• The validation of a Commit or Proposal failed.

• The client ignored an FTD as per section 10.3.

Clients shall not send Negative-Delivery IMDNs in any other contexts.

Client-generated Negative-Delivery IMDNs shall be sent as Signed Messages which contain

a message/imdn+xml Body with a <delivery-notification><status> element set to

“failed”.

The <delivery-notification> element shall also contain a new <mls-client-

failure-reason> element.

The XML format of the client-generated Negative-Delivery IMDN shall follow the XML

schema defined in Section 7.7.2.3.

7.7.2.3 Delivery IMDN Schema

The deliveryNotification XML element as defined in [RFC5438] will be modified to conform to

the following schema:

<define name="deliveryNotification">

 <element name="delivery-notification">

 <element name="status">

 <choice>

 <element name="delivered">

 <empty/>

 </element>

 <element name="failed">

 <choice>

 <element name="mls-server-failure-reason">

 <choice>

 <element name="incorrect-era">

 <empty/>

 </element>

 <element name="incorrect-epoch">

 <empty/>

 </element>

 <element name="incorrect-epoch-authenticator">

 <empty/>

 </element>

 <element name="expired-credential">

 <empty/>

 </element>

 <element name="mismatched-rcs-group-state">

 <empty/>

 </element>

 <element name="unparsable-commit">

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 40 of 90

 <empty/>

 </element>

 <element name="mismatched-confirmation-tag">

 <empty/>

 </element>

 <element name="pending-proposal">

 <empty/>

 </element>

 <element name="transient-error">

 <empty/>

 </element>

 <element name="encryption-not-available">

 <empty/>

 </element>

 <element name="invalid-commit">

 <empty/>

 </element>

 </choice>

 </element>

 <element name="mls-client-failure-reason">

 <choice>

 <element name="message-from-non-member">

 <empty/>

 </element>

 <element name="invalid-credential">

 <empty/>

 </element>

 <element name="invalid-commit">

 <empty/>

 </element>

 <element name="failed-to-decrypt">

 <empty/>

 </element>

 <element name="commit-in-privatemessage">

 <empty/>

 </element>

 </choice>

 </element>

 </choice>

 </element>

 <ref name="commonDispositionStatus"/>

 </choice>

 <ref name="deliveryExtension"/>

 </element>

 </element>

</define>

7.7.3 Display IMDN Definition

Display IMDNs are to be sent as Signed Messages which contain a message/imdn+xml

Body with a <display-notification><status> element set to “displayed”.

When the Display IMDN is for a Re-Sent Message, the client shall include the Re-Sent

Message ID (instead of the original Message ID) in the <imdn><message-id> element.

The client shall include the original Message ID in the Original-Message-Id header as

defined in section 7.2.3.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 41 of 90

7.8 File Transfer Message Definition

7.8.1 FileInfo Message

The file encryption key and other information are defined in this FileInfo proto:

enum Algorithm {
 ALGORITHM_UNSPECIFIED = 0;
 AES256_CTR_HMAC_SHA256_256TAG = 1;
}

message FileEncryptionInfo {

 bytes key_material = 1;

 bytes initialization_vector = 2;

 bytes hmac_tag = 3;

 Algorithm algorithm = 4;

}

message FileMetadata {

 string file_name = 1;

 string content_type = 2;

 FileEncryptionInfo encryption_info = 3;

}

message FileInfo {

 FileMetadata file = 1;

 FileMetadata thumbnail = 2;

 FileMetadata subject = 3;

 FileMetadata icon = 4;

}

The Client shall:

1. Create a FileInfo proto and binary encode it.

2. Construct an MlsMessage as per section 7.5.2 containing the binary encoded FileInfo

as the MIME body with a ContentType of “message/mls-rcs-file-info”.

7.8.2 File Transfer Message Body

Once the client has generated an MlsMessage as per section 7.8.1, they shall:

1. Base64 encode the EncryptedMessage.

2. Embed the Base64 encoded message into the mls-file XML element defined in Table

5.

3. Set the content-type in the file_info section of the XML to “message/mls-ft” for both the

file and the thumbnail

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 42 of 90

<?xml version="1.0" encoding="UTF-8"?>

<file xmlns="urn:gsma:params:xml:ns:rcs:rcs:fthttp"

 xmlns:x="urn:gsma:params:xml:ns:rcs:rcs:up:fthttpext">

 <file-info type="thumbnail">

 <file-size>[encrypted thumbnail size in bytes]</file-size>

 <content-type>message/mls-ft</content-type>

 <data url = "[HTTP URL for the thumbnail]" until = "[validity of the thumbnail]"/>

 </file-info>

 <file-info type="file" file-disposition="[file-disposition]">

 <file-size>[encrypted file size in bytes]</file-size>

 <file-name>encrypted_file</file-name>

 <content-type>message/mls-ft</content-type>

 <data url = "[HTTP URL for the file]" until = "[validity of the file]"/>

 <x:branded-url>[alternative branded HTTP URL of the file]</x:branded-url>

 </file-info>

 <mls-file>

 [base64 encoding of the MlsMessage]

 </mls-file>

</file>

Table 5: File Transfer Message XML Schema

7.9 Commit and Proposal Messages

Commit and Proposal Messages shall be represented as CPIM messages when they are

exchanged to or from Clients.

These messages shall have a Content-Type of message/mls-rcs-client for messages

originating from the client and message/mls-rcs-server for messages originating from

the Conversation Focus.

7.9.1 message/mls-rcs-client and message/mls-rcs-server ContentTypes

The message/mls-rcs-client and message/mls-rcs-server content-types are

used to compactly encode the contents of multiple message/mls contents. The

message/mls-rcs-client shall contain the ClientMlsRcsMessage proto defined

below. The message/mls-rcs-server shall contain the ServerMlsRcsMessage proto

defined below. The client and Conversation Focus shall include the binary encoding of the

proto in the CPIM body.

The following structres are represented in TLS format:

struct {

 // List of MlsMessages containing a Proposal.

 MlsMessage mls_messages<V>;

} ProposalList;

struct {

 // List of MlsMessaes containing a Commit.

 MlsMessage mls_messages<V>;

} CommitList;

The following structures are represented in Protocol Buffer format:

// MlsRcsMessage payload type that represents Commit messages and

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 43 of 90

// Welcome messages.

message WelcomeCommitBundle {

 // contains a CommitList TLS structure that is a List of commit

 // messages.

 bytes commit_list = 1;

 // Raw bytes that represent a welcome message. This is expected to

 // be a serialized MlsMessage that contains a Welcome message.

 bytes welcome = 2;

 // Raw bytes that represent the MLS GroupInfo. This is expected to

 // be wrapped by an MlsMessage.

 bytes group_info = 3;

 // Raw bytes that represent the EpochAuthenticator.

 bytes epoch_authenticator = 4;

 // Raw bytes that represent a RatchetTree.

 // This should only be included for the first commit in an Era.

 bytes ratchet_tree = 5;

}

// MlsRcsMessage payload type that represents a Commit message.

message CommitBundle {

 // contains a CommitList TLS structure that is a List of commit

 // messages.

 bytes commit_list = 1;

 // Optional MlsMessage containing a PrivateMessage that should

 // be delivered transactionally with the group state changes in

 // this bundle.

 bytes private_message = 2;

 // Raw bytes that represent the MLS GroupInfo. This is expected to

 // be wrapped by an MlsMessage.

 bytes group_info = 3;

 // Raw bytes that represent the EpochAuthenticator.

 bytes epoch_authenticator = 4;

}

// ServerMlsRcsMessage payload that is generated by the server

// after processing a CommitBundle or WelcomeCommitBundle.

message ServerCommitBundle {

 // contains a CommitList TLS structure that is a List of commit

 // messages.

 bytes commit_list = 1;

 // Raw bytes that represent a welcome message. This is expected to

 // be a serialized MlsMessage that contains a welcome message.

 bytes welcome = 2;

 // Raw bytes that represent a private message bundled with the

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 44 of 90

 // commit. This is expected to be included for Group Subject/Icon

 // changes.

 bytes private_message = 3;

}

// Information persisted by the server that can be used by clients to

// initiate self-healing.

message MlsGroupInfo {

 // The latest GroupInfo for the MLS Group.

 // This is expected to a serialized MlsMessage that contains a

 // GroupInfo.

 bytes group_info = 1;

 // The latest RatchetTree for the MLS Group.

 bytes ratchet_tree = 2;

 // Proposals that have been accepted by the server, but not yet

 // committed.

 // This is a ProposalList TLS message.

 bytes pending_proposals = 3;

}

// MLS control messages sent by servers.

message ServerMlsRcsMessage {

 oneof payload {

 // ProposalList TLS payload that was sent by clients.

 bytes proposal_list = 1;

 // Commit message payload that was sent by clients.

 ServerCommitBundle server_commit_bundle = 2;

 // Information stored about an MLS group that can be used by

 // clients to initiate self-healing.

 MlsGroupInfo mls_group_info = 3;

 }

}

// MLS control messages sent by clients.

message ClientMlsRcsMessage {

 oneof payload {

 // ProposalList TLS payload for Proposals by the client.

 bytes proposal_list = 1;

 // Welcome and Commit message payload.

 WelcomeCommitBundle welcome_commit_bundle = 2;

 // Commit message payload.

 CommitBundle commit_bundle = 3;

 }

}

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 45 of 90

7.9.2 Client-Generated Commits

When creating a new RCS Conversation, or a new Era, the Initial Commit Messages

generated by clients shall include:

• A Commit representing a change to the MLS Group as per [RFC9420].

• A GroupInfo object which represents the state of the MLS Group after the contents of

the associated Commit have been applied as per [RFC9420].

• An Epoch Authenticator as defined by [RFC9420] for the new Epoch.

• Welcome Message as defined by [RFC9420].

• A Ratchet Tree representing the current members of the MLS Group.

The above will be embedded in the welcome_commit_bundle field of the

ClientMlsRcsMessage as defined in section 7.9.1. The ClientMlsRcsMessage shall be

embedded in a CPIM message.

For a Commit that adds a new Client to the MLS Group, or performs a KeyPackage Update

as per section 9.5.4, the client shall include:

• A Commit representing a change to the MLS Group as per [RFC9420].

• A GroupInfo object which represents the state of the MLS Group after the contents of

the associated Commit have been applied as per [RFC9420].

• An Epoch Authenticator as defined by [RFC9420] for the new Epoch.

• Welcome Message as defined by [RFC9420].

The above will be embedded in the welcome_commit_bundle field of the

ClientMlsRcsMessage as defined in section 7.9.1. The ractchet_tree field shall be empty.

The ClientMlsRcsMessage shall be embedded in a CPIM message.

For any other type of Commit, the client shall include:

• A Commit representing a change to the MLS Group as per [RFC9420].

• A GroupInfo object which represents the state of the MLS Group after the contents of

the associated Commit have been applied as per [RFC9420].

• An Epoch Authenticator as defined by [RFC9420] for the new Epoch.

• An Optional PrivateMessage including icon and subject keys when there is a change

to either.

The above will be embedded in the commit_bundle field of the ClientMlsRcsMessage

as defined in section 7.9.1. The ClientMlsRcsMessage shall be embedded in a CPIM

message.

7.9.3 Server-Processed Commits

After the Conversation Focus accepts the Commit, the Conversation Focus shall remove the

GroupInfo body, Ratchet Tree and Epoch Authenticator before delivering the message.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 46 of 90

The Conversation Focus shall create a ServerCommitBundle including the Commit and

optionally the Welcome Message and the private message for group subject and icon and

embed it in the server_commit bundle field of the ServerMlsRcsMessage.

When receiving the very first welcome_commit_bundle in an RCS Conversation or new

Era, the Conversation Focus shall store the ratchet_tree. For all Commits other than that

the first commit, the Conversation Focus shall update the ratchet_tree stored with the

changes in the Commit.

7.9.4 Proposal Lists

When sending a list of proposals, the Client shall:

• Embed each Proposal in an MlsMessage.

• Costruct a ProposalList Message containing all the MlsMessages.

• Construct a ClientMlsRcsMessage containing the ProposalList in the

proposal_list field.

7.10 MLS GroupInfo Retrieval Format

7.10.1 SIP Info Response Body

When the Conversation Focus receives a SIP INFO request as per section 6.3.1, the

Conversation Focus shall:

• Retrieve the MLS GroupInfo, Ratchet Tree and any pending Proposals stored for the

MLS Group.

• Construct an ServerMlsRcsMessage with a ServerGroupInfo as per section 7.9.1.

• Construct a MIME body with the binary-encoded ServerMlsRcsMessage and the

content-type being message/mls-rcs-server.

• Include the MIME body in the body of the SIP INFO 200OK.

7.11 MLS Extensions

7.11.1 Era

7.11.1.1 Era GroupContext Extension

The Era extension is a GroupContext Extension as defined in section 17.3 of [RFC9420]. Its

attributes are as follows:

• Extension Value: 0xF001

• Extension Name: era

• extension_data: uint32 numeric value of the Era

• Applicable Messages: GroupInfo and Welcome Message

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 47 of 90

7.11.2 end_mls

7.11.2.1 end_mls Proposal

The end_mls extension is a Proposal extension as defined in section 17.4 of [RFC9420]. Its

attributes are as follows:

• Extension Value: 0xF001

• Extension Name: end_mls

• External: No

• Path Required: No

7.11.2.2 end_mls GroupContext Extension

The end_mls extension is a Group Context Extension as defined in section 17.3 of

[RFC9420]. Its attributes are as follows:

• Extension Value: 0xF002

• Extension Name: end_mls

• extension_data: “end_mls”

• Applicable Messages: GroupInfo and Welcome Message

7.11.3 icon_key

7.11.3.1 icon_key GroupContext Extension

The icon_key extension is a Group Context Extension as defined in section 17.3 of

[RFC9420]. Its attributes are as follows:

• Extension Value: 0xF003

• Extension Name: icon_key

• extension_data: the symmetric key used to encrypt the icon.

• Applicable Messages: Welcome Message

7.11.4 icon_commitment

7.11.4.1 icon_commitment GroupContext Extension

The icon_commitment extension is a Group Context Extension as defined in section 17.2

of [RFC9420]. Its attributes are as follows:

• Extension Value: 0xF004

• Extension Name: icon_commitment

• extension_data: the icon commitment as defined in Annex C.1

• Applicable Messages: GroupInfo and Welcome Message

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 48 of 90

7.11.5 subject_key

7.11.5.1 subject_key GroupContext Extension

The subject_key extension is a Group Context Extension as defined in section 17.2 of

[RFC9420]. Its attributes are as follows:

• Extension Value: 0xF005

• Extension Name: subject_key

• extension_data: the symmetric key used to encrypt the subject.

Applicable Messages: Welcome Message

7.11.6 subject_commitment

7.11.6.1 subject_commitment GroupContext Extension

The subject_commitment extension is a Group Context Extension as defined in section

17.2 of [RFC9420]. Its attributes are as follows:

• Extension Value: 0xF006

• Extension Name: subject_commitment

• extension_data: the subject commitment as defined in Annex C.1

• Applicable Messages: GroupInfo and Welcome Message

7.11.7 rcs_signature

7.11.7.1 rcs_signature Proposal

The rcs_signature extension is a Proposal extension as defined in section 17.4 of

[RFC9420]. Its attributes are as follows:

• Extension Value: 0xF002

• Extension Name: rcs_signature

• External: No

• Path Required: No

7.11.8 self_remove

7.11.8.1 self_remove Proposal

The self_remove extension is a Proposal extension as defined in section 17.4 of [RFC9420].

Its attributes are as follows:

• Extension Value: 0xF003

• Extension Name: self_remove

• External: Yes

• Path Required: Yes

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 49 of 90

7.11.9 server_remove

7.11.9.1 server_remove Proposal

The server_remove extension is a Proposal extension as defined in section 17.4 of

[RFC9420]. Its attributes are as follows:

• Extension Value: 0xF004

• Extension Name: server_remove

• External: Yes

• Path Required: Yes

7.12 ACS Signed Encryption Identity Proof

When ACS signs the Encryption Identity Proof as defined in section 4.1, ACS shall construct

and sign SignedEncryptionIdentityProofTBS as per section 7.12.1 and include all

the elements including the signature in SignedEncryptionIdentityProof as per

section 7.12.1.

7.12.1 ACS Signed Encryption Identity Proof Format

struct {

 // MSISDN of the Participant verified by ACS

 opaque msisdn<V>;

 // Participant Key sent in the request, encoded in DER format

 opaque participant_key<V>;

 // Home KDS sent in the request

 uint32 home_kds<V>;

 // Expiry of this signed Tuple. Measured in seconds since the Unix

 // epoch (1970-01-01T00:00:00Z)

 uint64 expiry_seconds<V>;

} SignedEncryptionIdentityProofTBS;

struct {

 // Expiry of this signed Tuple. Measured in seconds since the Unix

 // epoch (1970-01-01T00:00:00Z) as per []

 uint64 expiry_seconds<V>;

 // Signature of the above request

 opaque signature<V>;

} SignedEncryptionIdentityProof;

8 Conversation Creation

8.1 Client Procedures

The Client shall use procedures defined in section 5.2 to check if the Participants are

capable of E2EE. If any of the Participants are not capable of E2EE, then the client shall

revert to creating an unencrypted conversation as specified in [GSMA PRD-RCC.07].

When all Participants are capable of E2EE, the client shall request and validate all

KeyPackages for all Participants in the Conversation as per section 5.3. The Home KDS

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 50 of 90

shall return KeyPackages for all Clients of each Participant. If the Home KDS does not return

KeyPackages for one or more of the Participants requested, the client shall create an

unencrypted conversation.

With all KeyPackages fetched, the client shall create an MLS Group as per [RFC9420]. The

MLS Group shall contain all KeyPackages for all Clients of the Participants. The MLS Group

must contain the Era as a GroupContext Extension. The Client shall generate an MLS

GroupInfo, initial Commit, Ratchet Tree, Epoch Authenticator and Welcome Message.

Upon creating the MLS Group Info, initial Commit, Ratchet Tree, Epoch Authenticator and

Welcome Message, the client shall create a SIP INVITE as per section 8.1.1 or 8.1.2 and

send the INVITE to the Messaging Server.

After receiving the 200 OK from the Messaging Server that includes the MLS-Opaque-

Token, the client shall store the MLS-Opaque-Token and use it for all subsequent

requests.

When receiving an INVITE from the Messaging Server with an initial Commit and Welcome

Message, the client shall validate the Welcome Message and Commit as per section 6.2.6,

store the MLS Group locally, and use the MLS-Opaque-Token specified in the INVITE for

all future requests to the Messaging Server for that RCS Conversation.

8.1.1 1-to-1 INVITE

The SIP INVITE created by the client shall (in addition to the requirement set in [GSMA

PRD-RCC.07]):

• Include a multipart/mixed body.

• Include the SDP as the first part of the INVITE body as per [GSMA PRD-RCC.07].

• Include the binary-encoded MLS GroupInfo, initial Commit, and Welcome Message

generated as per section 7.9.2 as the second part of the INVITE body.

8.1.2 Group INVITE

The SIP INVITE created by the client shall (in addition to the requirement set in [GSMA

PRD-RCC.07]):

• Include a multipart/mixed body.

• Include the SDP as the first part of the INVITE body as per [GSMA PRD-RCC.07].

• Include the resource-lists for the participants of the group as the second part of the

INVITE as per [GSMA PRD-RCC.07].

• Include the binary-encoded MLS GroupInfo, initial Commit, and Welcome Messages

generated as per section 7.9.2 as the third part of the INVITE body.

8.2 Messaging Server Procedures

8.2.1 Conversation Focus

Upon receiving a SIP INVITE from the client, the originating Messaging Server for a 1-to-1

chat or the Conference Focus for group conversations shall:

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 51 of 90

• Become the Conversation Focus (as per section 6.1.2) for the RCS Conversation.

• Validate the initial Commit to create the group as per section 6.2.2.

• Store the GroupInfo.

• Return the 200 OK with the MLS-Opaque-Token, MLS-Epoch, and MLS-Era

headers.

The Conversation Focus shall then fan out the INVITE with the MLS Group, initial Commit,

and Welcome Message to the other recipient(s) in the 1-to-1 or group chat (in the resource-

list) as per [GSMA PRD-RCC.07]. The Conversation Focus shall also send the initial Commit

back to the sender as an MSRP message.

8.2.2 Participant Function

Upon receiving a SIP INVITE from a Conversation Focus, the terminating Messaging Server

for a 1-to-1 Chat or the Participation Function for group chat shall:

• Follow the procedures in section 6.1.3 for the MLS-Opaque-Token.

• Forward the INVITE as per [GSMA PRD-RCC.07].

8.3 Creating a New Era

Clients shall create a new Era in the following scenarios:

• When self-heal is not successful as per section 10.1.1.

• When resurrecting the MLS Group is not possible due to expired certificates as per

section 11.1.

• When restarting an RCS Conversation after becoming inactive (over 30 days of no

messages sent).

• When updating the RCS MLS version to a lower version than the current one.

• When downgrading the Cipher Suite of the MLS Group.

8.3.1 Client Procedures

When a client needs to create a new Era, it shall:

• Advance the Era in the conversation by 1.

• Follow the procedures in section 8.1 with the new Era value.

If the client receives a 409 Conflict as a response to the INVITE and/or a negative IMDN with
error code <incorrect-era>, the client shall fetch the GroupInfo as per section 7.10, create

the correct Era, and retry the operation.

8.3.2 New Conversation Focus

When the originating Messaging Server for a 1-to-1 Chat or the new Conversation Focus

receives the INVITE with the new Era, it shall assume the Conversation Focus role and

follow the procedures in section 8.2.1.

If the Conversation Focus is moving, the new Conversation Focus must wait for a response

from the old Conversation Focus before responding to the client.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 52 of 90

8.3.3 Old Conversation Focus

If the new Conversation Focus is different from the Conversation Focus for the previous Era,

the old Conversation Focus shall:

• Validate that the Era is advanced exactly by 1.

o If the new Era is not modifying the state exactly by 1, the server shall return a 409

Conflict as a response to the INVITE and send a negative IMDN as per section

6.2.5.

• Delete the MLS GroupInfo stored locally.

• Follow the procedures in section 8.2.2.

8.3.4 Participating Functions

Upon receiving a SIP INVITE from a Conversation Focus, the terminating Messaging Server

for a 1-to-1 Chat or the Participation Function for a group chat shall follow procedures as per

section 8.2.2.

9 Conversation Operations

9.1 Messaging

9.1.1 Encrypted Messages

The client shall not send encrypted messages if the end_mls GroupContext Extension is

present in the GroupInfo.

For all content types to be encrypted, such as regular messages, replies, edits, or any other

kind of content, the client shall:

• Create the Secret Message format as per section 7.5.1.

• Create a PrivateMessage containing the Secret Message as per [RFC9420].

o Using the PADME algorithm in [PADME], add padding in the

PrivateMessageContent as per [RFC9420].

• Wrap the PrivateMessage in the format indicated in section 7.5. Messages will then

be sent over MSRP.

When receiving a message, the Participating Function shall:

• Forward the message to the Conversation Focus.

When receiving an encrypted message, the Conversation Focus shall:

• Verify the message against the Epoch Authenticator stored for the Epoch the

message is intended for.

o If the Epoch Authenticator fails, the Conversation Focus shall reject the message

as per section 6.2.5.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 53 of 90

• Verify that the sender of the message in the Private Message matches the RCS

sender identity (in the Invite from/to header and/or CPIM identity).

o If they do not match, the Conversation Focus shall reject the message as per

section 6.2.5.

• Verify that the end_mls is not present in the GroupInfo.

o If the end_mls is present, the server shall reject the message as per section

6.2.5.

• Fan out the message as per [GSMA PRD-RCC.07].

When receiving an encrypted message, the client shall:

• Retrieve the PrivateMessage from the CPIM container.

• Decrypt the Secret Message at the Epoch of the message as per [RFC9420] and

remove padding.

• Ensure the sender of the message in the Private Message matches the RCS sender

identity (in the Invite from/to header and/or CPIM identity).

o If the values do not match, the client shall use the MLS identity.

9.1.2 File Transfer

9.1.2.1 File Encryption

To encrypt the file the client shall:

• Follow the file encryption algorithm defined in Annex C.2.

o The client shall generate fresh key material and use AES-256-CTR for encryption

per [NIST SP800-38A], and HMAC-SHA256 to calculate the tag per [RFC5869].

• Follow the same algorithm to encrypt the thumbnail but with a freshly generated key.

• Upload the encrypted files to the HTTP Content Server as per [GSMA PRD-RCC.07].

o The filename uploaded to the HTTP Content Server shall be set to

“encrypted_file”-. The MIME type shall be message/mls-ft.

• Encapsulate the encryption keys, initialization vectors, tags, original file name and

types into the new FileInfo proto as defined in section 7.8.1.

• Create a Secret Message containing the serialized FileInfo protocol buffer and

encrypt it using MLS Message Encryption per section 9.1.

• The encrypted payload is added to the XML file as per section 7.8.2.

• Wrap the file transfer XML in a CPIM container and send as per [GSMA PRD-

RCC.07]

9.1.2.2 File Decryption

The recipient client downloads the encryped file from the HTTP Content Server and shall:

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 54 of 90

• Decrypt the MLS message part in the XML payload.

• Decode the FileInfo defined in section 7.8.1 to get the encryption keys and tags.

• Compute the tag as defined in Annex C.3 and validate it against the tag in the

FileEncryptionInfo struct.

o If they match, the client shall decrypt the encrypted file using the algorithm

defined in Annex C.3.

• Replace the file name and type with the original filename and type from the FileInfo

proto.

• Delete the encrypted file.

• Zero-out the file encryption key.

The client shall follow the same steps to decrypt the thumbnail.

9.1.3 Delivery Report

Delivery receipts are not encrypted. However, they must be signed. The client shall:

• Create the AAD as per section 7.6.3.2.

• Store the AAD as per section 7.6.1.

• Send the delivery report as per [GSMA PRD-RCC.07],

9.1.4 Display Report

Display receipts are not encrypted. However, they must be signed. The client shall:

• Create the AAD as per section 7.6.3.3.

• Store the AAD as per section 7.6.1.

• Send the display report as per [GSMA PRD-RCC.07].

9.1.5 User Alias

If present, the client shall encrypt the user alias. When the alias is encrypted, the client shall:

• Create a PrivateMessage containing the alias as per [RFC9420].

o Using the PADME algorithm in PADME, add padding in the

PrivateMessageContent as per [RFC9420].

• Base-64 URL encode the PrivateMessage containing the alias.

• Include the Base-64 encoded message as an extra SIP URI parameter “encrypted-

alias=<base-64 encoding>.

An example of the SIP URI with an encrypted alias would be:

From: sip:+1234578901@operator.com;user=phone;encrypted-alias=aGVsbG8gd29ybGQ

When receiving a SIP URI with an encrypted alias header, the client shall:

• Base-64 URL decode the encrypted-alias parameter to retrieve the PrivateMessage.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 55 of 90

• Decrypt the raw alias from the PrivateMessage as per [RFC9420].

9.2 Adding Participants to a Group Chat

When adding a new Participant(s), the client shall:

• Query capabilities to ensure the Participant(s) have MLS capabilities as per section

5.2.

• Fetch KeyPackages for the Participant(s) as per section 5.3.

o The Home KDS shall return KeyPackages for all Clients of each Participant.

o If the Participant(s) do not support MLS in capabilities or do not have

KeyPackages, the client shall move the RCS Conversation to Unencrypted state

as per section 11.2.

• Using the KeyPackages, create a Commit to the existing MLS Group that adds all the

Clients of the Participant(s) and an Epoch Authenticator for that Epoch as per

[RFC9420].

• Create a Welcome Message for the new Client(s) as per section 7.9.2.

o If the RCS Conversation includes a subject and/or icon, the client shall follow the

procedures in section 9.7.1.3.

• Create the updated GroupInfo to be uploaded to the server as per section 7.9.2.

• Create a REFER as per [GSMA PRD-RCC.07] section 3.2.4.6.

o If it is a single user REFER, create a body with type that includes the

ClientMlsRcsMessage as per section 7.9.2.

o If it is a REFER for multiple recipients, include a multipart/mixed body that

includes:

▪ The resource-lists as the first part with the new Participant(s).

▪ The ClientMlsRcsMessage as per section 7.9.2.

• Send the REFER to the Messaging Server as per [GSMA PRD-RCC.07].

• Wait for the Commit to arrive back as an MSRP message to apply it locally.

When receiving a REFER, the Participating Function shall:

• Include the Conversation Focus’s MLS-Opaque-Token.

• Forward the REFER to the Conversation Focus.

When receiving a REFER, the Conversation Focus shall:

• Verify the Commit as per 6.2.2.

o If the Commit is for a previous Epoch, the server shall return a 409 Conflict as a

response to the REFER. The client shall then sync their state (either by retrieving

Store and Forward messages or self-healing) and trying again.

o If the Commit fails verification for any other reason, the server shall return a 400

Bad Request.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 56 of 90

o In both cases, the server shall send a negative IMDN to the sender indicating the

failure as per section 7.7.2.1.

• Verify that the Participants(s) added in the Commit is the same as in the REFER.

• Store the new GroupInfo and Epoch Authenticator and update the ratchet tree.

• Send an INVITE (as per [GSMA PRD-RCC.07]) including the Welcome Message as

per section 7.9.3.

o If the recipient is offline when the INVITE arrives at the Terminating Function, the

Terminating Function shall store the Welcome Message for deferred delivery

when the recipient comes back online.

• Forward NOTIFYs to all members of the RCS Group as per [GSMA PRD-RCC.07].

• Forward the Commit as MSRP message to all members (including the sender).

When a Commit via MSRP, the client shall:

• Validate the Commit as per section 6.2.6.

• Apply the Commit locally.

• Apply the change to the RCS Conversation state.

9.3 Removing Participants from a Group Chat

When the client wishes to kick out Participant(s), the client shall:

• Create a Commit to remove all the Clients of the Participant(s) to be removed from

the RCS Conversation as per [RFC9420].

• Create the updated GroupInfo to be uploaded to the server.

• Create a REFER as per [GSMA PRD-RCC.11] section 7.3.6

o If it is a single user REFER, create a body with type that includes the epoch

information and GroupInfo as per section 7.9.2.

o If it is a REFER for multiple users, include a multipart/mixed body that

includes:

▪ The resource-lists as the first part with the kicked Participant(s) as per [GSMA

PRD-RCC.11] section 7.3.6.

▪ Commit, Epoch Authenticator, and GroupInfo as per section 7.9.2.

• Send the REFER to the Messaging Server as per [GSMA PRD-RCC.07].

• Wait for the Commit to arrive back as an MSRP message to apply it locally.

When receiving a REFER, the Participating Function shall:

• Include the Conversation Focus’s MLS-Opaque-Token.

• Forward the REFER to the Conversation Focus.

When receiving a REFER, the Conversation Focus shall:

• Verify the Commit as per 6.2.2.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 57 of 90

o If the Commit is for a previous Epoch, the server shall return a 409 Conflict as a

response to the REFER. The client shall then sync their state (either by retrieving

Store and Forward messages or self-healing) and trying again.

o If the Commit fails verification for any other reason, the server shall return a 400

Bad Request.

o In both cases, the server shall send a negative IMDN to the sender as per section

7.7.2.1.

• Verify that the Participants(s) removed in the Commit is the same as in the REFER.

• Store the new GroupInfo and Epoch Authenticator and update the ratchet tree.

• Forward NOTIFYs to all members of the RCS Group as per [GSMA PRD-RCC.07].

o The server shall include SIP;cause=410;text="Kicked" in the

<disconnection-info> for the removed user.

• Forward the Commit as MSRP message to all members (including the sender).

When receiving a Commit via MSRP, the client shall:

• Validate the Commit as per section 6.2.6.

• Apply the Commit locally.

• Apply the change to the RCS Conversation state.

9.4 Self Leave

When a Participant wants to leave the RCS Conversation, the client shall:

• Create Proposal(s) to remove all the Clients of the Participant as per [RFC9420]

using the self_remove Proposal extension as per 7.11.8.1.

• Create a SIP BYE as per [GSMA PRD-RCC.07] with a body that includes the

Proposal(s) as per section 7.9.4.

• Send the SIP BYE to the Messaging Server as per [GSMA PRD-RCC.07].

• Wait for the 200OK to arrive before leaving the group.

When receiving a SIP BYE, the Participating Function shall:

• Include the Conversation Focus’s MLS-Opaque-Token.

• Forward the SIP BYE to the Conversation Focus.

When receiving a SIP BYE, the Conversation Focus shall:

• If the leave is for the last Participant in the RCS Conversation:

o Delete the MLS Group

o Return a 200 OK to the Sender as per [GSMA PRD-RCC.07]

• Otherwise:

o Verify the Proposal as per 6.2.3.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 58 of 90

▪ If the Proposal is for a previous Epoch, the server shall return a 409 Conflict

as a response to the REFER. The client shall then sync their state (either by

retrieving Store and Forward messages or self-healing) and trying again.

▪ If the Proposal fails verification for any other reason, the server shall return a

400 Bad Request.

▪ In both cases, the server shall send a negative IMDN to the sender as per

section 7.7.2.1.

o Verify that the Participant (and all their Clients) that is leaving is the same as the

Proposal.

o Forward NOTIFYs to all members of the RCS Group as per [GSMA PRD-

RCC.07].

▪ The server shall include SIP;cause=200;text="Call completed" in the

<disconnection-info> for the departing user.

o Forward the Proposal as an MSRP message to all members (not including the

sender).

▪ The server may choose to send the Proposal to a single member of the RCS

Conversation (e.g. an online member) to avoid race condition on Commits.

o Not accept any Proposals or Commits as per 6.2.1 until a Commit for the

Proposal(s) is applied.

When a client receives a SIP NOTIFY to remove Participant(s) and a Proposal via MSRP,

the client shall:

• Validate the Proposal as per section 6.2.6.

• Create a Commit with the Proposal(s) sent in the MSRP to remove the Clients and

create the epoch information and send it to the Messaging Server

o If a Commit arrives that includes the Proposal(s) before the client creates/sends

the Commit, the client shall abandon Commit creation/sending.

• Wait for the Commit with the leave Proposal(s) to arrive as an MSRP message to

apply it locally.

9.5 Commits

9.5.1 Commit Procedure

When a Participant wants to send a Commit that doesn’t involve changes to the RCS

Conversation (e.g. update their Keys, add Clients to existing Participants, update

GroupContext/GroupContext Extension) the client shall:

• Create a Commit as per [RFC9420].

• Create the GroupInfo to be uploaded to the server.

• Create an MSRP message with a body that includes the binary encoded Commit,

Epoch Authenticator and GroupInfo per section 7.9.2.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 59 of 90

• Send the MSRP to the Messaging Server as per [GSMA PRD-RCC.07].

• Wait for the Commit to arrive back as an MSRP message to apply it locally.

When receiving an MSRP message with a Commit, the Participating Function shall:

• Forward the MSRP to the Conversation Focus as per [GSMA PRD-RCC.07]

When receiving an MSRP message with a Commit, the Conversation Focus shall:

• Validate the Commit as per 6.2.2.

o If the Commit fails validation, the server shall send a negative IMDN as per

section 7.7.2.1.

• Store the new GroupInfo and epoch authenticator.

• Create the new ServerMlsRcsMessage proto as per section 7.9.3

• Create a new MSRP message containing the ServerMlsRcsMessage.

• Forward to all members of the RCS Group (including the sender) as per [GSMA PRD-

RCC.07].

When a client receives an MSRP with a Commit, it shall:

• Validate the Commit as per section 6.2.6.

• Apply the Commit locally.

9.5.2 Key Updates

Clients must update their keys in the MLS Group for Active Conversations. If the user has

joined with a last resort KeyPackage, the initial key update shall follow the intervals in the

first row of the following table. All other key updates shall follow the intervals in the second

row.

The key update must occur after either the maximum number of days or the maximum

number of outgoing messages, whichever comes first. It shall not happen earlier than the

minimum number of days.

Key update scenario Minimum #
days

Maximum #
days

Maximum #
outgoing messages

Initial join with a last resort

KeyPackage

0 1 30

Regular key update 7 30 50

Table 6: Key Update Intervals

Clients receiving Key Updates outside of the intervals above shall accept the Key Updates.

To create a key update, the client shall create an empty commit with UpdatePath or any

Commit with an UpdatePath as per [RFC9420] and send the commit as per 9.5.1.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 60 of 90

9.5.3 Certificate Update

Client must update their certificate in the MLS Group at least every 30 days for Active

Conversations. In order to achieve that, the client shall:

• Update the ACS Signed Encryption Identity Proof via a config refresh as per [GSMA

PRD-RCC.07].

• Create new KeyPackages as per section 5.

• Create an empty Commit with UpdatePath containing the new leaf from the newly

created KeyPackage.

• Send the Commit as per section 9.5.1.

If the client has a certificate and/or ACS Signed Encryption Identity Proof that expires in more
than 60 days, it may use the certificate and/or the ACS-Signed Encryption Identity Proof
instead of calling the server.

9.5.4 KeyPackage Update

If another Client in the MLS Group has an expired certificate, or has not updated their leaf

Keys in over 30 days, the client shall:

• Fetch KeyPackage(s) as per section 5.3 for all Clients with expired certificates or

have not updated keys.

• Create a Commit that removes the old Leaf Nodes of the Client(s) and adds new

leaves from the KeyPackage as per [RFC9420].

• Create a Welcome Message for all Clients replaced.

• Send the Commit as per section 9.5.1.

If there are no valid KeyPackages for any of the Clients, the client shall move the RCS

Conversation to unencrypted as per section 11.2.

9.6 Server-Initiated User Removal

The Messaging Server can only initiate a user removal from the RCS Conversation if the

user has lost RCS due to inactivity or deactivation. The Messaging Server shall:

• Create NOTIFYs to all members of the RCS Group as per [GSMA PRD-RCC.07] with

the Participant(s) leaving.

o The server shall include SIP;cause=410;text="Removed by server" in the

<disconnection-info> for the removed user.

• Not accept any Proposals or Commits as per 6.2.1 until a Commit for the Participant

kicked arrives.

When a client receives a NOTIFY to remove Participant(s):

• Follow section 9.5.1 to create a Commit using the server_remove Proposal as per

section 7.11.9.1. This Commit should remove all Clients associated with the

Participant(s).Then create the new GroupInfo and send it to the Messaging Server.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 61 of 90

o If a Commit arrives that includes the removal of the Participant(s) before the client

creates/sends the Commit, the client shall abandon Commit creation/sending.

• Wait for the Commit with the leave Proposal to arrive as an MSRP message to apply

it locally.

9.7 Group Metadata Management

9.7.1 Group Icon and Subject

9.7.1.1 Encrypting Group Icon

To encrypt the group icon, the client shall:

• Encrypt the group chat Icon as per Annex C.2.

• Upload the encrypted content to the RCS File Transfer Server, following procedures

outlined in [GSMA PRD-RCC.07].

• Create the icon_commitment extension as per 7.11.4.1.

9.7.1.2 Encrypting Group Subject

To encrypt the group subject, the client shall:

• Encrypt the group chat subject as per Annex C.2.

• Base-64 encode the encrypted subject and include it in the MSRP.

• Create the subject_commitment extension as per 7.11.6.1.

9.7.1.3 Group Icon and Subject Extensions for New Joiners

When a new member joins the group or creates a new group, the client adding the new

member shall send the secrets for decrypting the group icon and subject in the Welcome

message. The client shall:

• Create the icon_key extension containing the symmetric key as per 7.11.3.1.

• Create the subject_key extension containing the symmetric key as per 7.11.5.1.

• Add the icon_key, icon_commitments, subject_key and

subject_commitment extension to GroupContext.

9.7.1.4 Changing the Group Icon

When changing the group icon, and the new icon is encrypted, the client shall:

• Follow the procedures in section 9.7.1.1

• Create a GroupContext Extensions Proposal that contains the icon_commitment

extension and a Commit as per Section 12.1.7 of [RFC9420].

• Create an MLS PrivateMessage to transport the symmetric key as per section 7.8.1

with file_name is “group_icon”.

• Replace the old symmetric key in the icon_key extension of the local GroupInfo

object with the new symmetric key.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 62 of 90

• Create a separate GroupInfo object without the icon_key extension in it.

• Create a multi-part message consisting of the Commit, GroupInfo, Epoch

Authenticator, and the PrivateMessage with the wireformat as defined in section

7.9.2.

• Send the multi-part message and the sanitized GroupInfo object to the server.

When receiving an encrypted group icon change request, the Conversation Focus shall:

• Validate the Commit as per 6.2.2.

o If the Commit fails validation, the server shall send a negative IMDN as per

section 7.7.2.1.

• Store the new icon, GroupInfo, and epoch authenticator.

• Create the new ServerMlsRcsMessage proto as per section 7.9.3

• Create a new MSRP message containing the ServerMlsRcsMessage.

• Forward the MSRP to all members of the RCS Group (including the sender) as per

[GSMA PRD-RCC.07].

• Send a NOTIFY with the new icon as per [GSMA PRD-RCC.07].

When receiving an encrypted new icon, the client shall:

• Verify the correctness of the Commit message as per section 6.2.6.

• Use the Commit to derive the next-epoch application encryption key as per section

9.1 of [RFC9420].

• Decrypt the Application message using the next-epoch application encryption key to

obtain the symmetric key.

• Download the encrypted icon from the RCS File Transfer Server and use the

symmetric key to decrypt it as per Annex C.3.

• Verify the correctness of the symmetric key and the decrypted group icon using the

data in the icon_commitments extension.

• Replace the symmetric key in the icon_key extension of the GroupInfo with the new

symmetric key.

9.7.1.5 Changing the Group Subject

When changing the group subject, and the new subject is encrypted, the client shall:

• Follow the procedures in section 9.7.1.2.

• Create a GroupContext Extensions Proposal that contains the

subject_commitments extension and a Commit as per Section 12.1.7 of

[RFC9420].

• Create an MLS PrivateMessage to transport the symmetric key as per section

7.8.1with file_name is “group_subject”.

• Replace the old symmetric key in the subject_key extension of the local GroupInfo

object with the new symmetric key.

• Create a separate GroupInfo object without the subject_key extension in it.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 63 of 90

• Create a multi-part message consisting of the Commit, GroupInfo, Epoch

Authenticator, and the PrivateMessage with the wireformat as defined in section

7.9.2.

• Send the multi-part message and the sanitized GroupInfo object to the server.

When receiving an encrypted group subject change request, the Conversation Focus shall:

• Validate the Commit as per 6.2.2.

o If the Commit fails validation, the server shall send a negative IMDN as per

section 7.7.2.1.

• Store the new subject, GroupInfo, and epoch authenticator.

• Create the new ServerMlsRcsMessage proto as per section 7.9.3

• Create a new MSRP message containing the ServerMlsRcsMessage.

• Forward the MSRP to all members of the RCS Group (including the sender) as per

[GSMA PRD-RCC.07].

• Send a NOTIFY with the new subject as per [GSMA PRD-RCC.07].

When receiving the new encrypted subject, the client shall:

• Verify the correctness of the Commit message as per section 6.2.6.

• Use the Commit to derive the next-epoch application encryption key as per section

9.1 of [RFC9420].

• Decrypt the Application message using the next-epoch application encryption key to

obtain the symmetric key.

• Decrypt the subject as per Annex C.3.

• Verify the correctness of the symmetric key and the decrypted group subject using

the data in the icon_commitments extension.

• Replace the symmetric key in the subject_key extension of the GroupInfo with the

new symmetric key.

10 MLS Group Recovery

Devices may encounter errors or disruptions that prevent them from encrypting or decrypting

MLS messages. Examples include messages getting malformed during transfer, on-device

storage issues, or a user switching from one device to another without the transfer of the

cryptographic state, and many more. When those errors occur, the client needs to heal its

MLS state to enable uninterrupted participation in encryption.

10.1 Self-Healing Mechanism

Self-Heal is a process of repairing the local state of the MLS group. It works by removing the

previous Client owned by the user and re-adding a new representation of the Client (owned

by the same user).

The Self-Heal procedure shall be initiated upon:

• Receiving an Application Message that can’t be decrypted.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 64 of 90

• Receiving an MLS Control Message that can’t be processed (e.g. failure to apply or

rejection due to validation, as described in section 6.2.6).

• Failing to send an Application Message due to epoch authenticator mismatch.

The self-healing process involves fetching the latest GroupInfo from the Messaging Server

(as defined in section 6.3.1) and creating an External Commit (as per [RFC9420]) based on

the latest Group Info from the backend to resync its own Leaf Node.

If the MLS Group contains expired certificates, the client shall Self-Heal first. The client shall

fetch new KeyPackage(s) for the Clients with expired certificates and replace them in the

MLS Group via an update mechanism in section KeyPackage Update. If there are no

available KeyPackages, the client shall move the Conversation to unencrypted as per

section 11.2.

The application shall have an upper limit on the number of retries for self-healing in a given

group. The application may use 5 as the maximum number of retries, and may not retry for

more than a day. After any of the limits is reached, the procedure is considered failed.

Fallback procedures defined in [GSMA PRD-RCC.71] shall apply.

Upon a failure of the Self-Heal procedure, the client shall create a new Era for the group, as

per procedures in section 8.3. The new Era can only include Participants whose Clients were

in the latest known MLS Group to the client self-healing. If there are Participants in the RCS

Conversation that are not in the latest known MLS Group, the client shall remove those

Participants from the RCS Conversation.

10.1.1 Self-Heal Procedure

The client shall:

• Request the GroupInfo from the Messaging Server, following the procedure from

section 6.3.1.

• Create an External Commit (as per [RFC9420]):

o If the client is replacing an old leaf with the same Participant Key: the client shall

use a resync External Commit.

o If the client is replacing an old leaf with a different Participant Key: the client must

use resync External Commit to replace all the Clients of the Participant with

KeyPackages that are signed with the new Participant Key.

o If the client is adding itself to the MLS Group (because it is a new Client of the

Participant): the client shall use the add External Commit to add itself to the MLS

Group.

• Follow the procedures to upload the Commit to the Messaging Server, as per section

9.5.1, including any necessary retries of this procedure.

During the Self-Heal procedure, the client may attempt to decrypt incoming messages and

may attempt to process incoming Commits. The client shall not initiate another Self-Heal on

the same MLS Group while one is ongoing.

The client shall not send outgoing messages to the RCS Conversation while Self-Heal is

ongoing.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 65 of 90

Figure 12: Illustration of the Self-Heal Procedure

10.2 Sending Fail to Decrypt (FTD)

After the Self-Heal Procedure is complete (as per section 0) the client shall:

• Send an FTD message for all Application Messages that it could not decrypt, one per

message to the sender of the Original Message.

• Construct the FTD as per section 0.

• Send an FTD as an MSRP message as per [GSMA PRD-RCC.07]. The FTD shall be

a Private-IM message. The FTD messages may be queued for automatic sending

while the Self-Heal for the same MLS Group is ongoing.

10.3 Receiving an FTD message

In this section:

• Original Message refers to the message that failed to decrypt on the recipient.

• Re-Sent Message refers to the message that was re-encrypted and re-sent with a

new Message-ID.

The FTD Message shall be ignored if:

• The Participant was not a member of the group at the time the Original Message was

sent, or

• The Original Message was sent earlier than 30 days ago.

• The Participant Key of the Participant has changed (without the new key being part of

the key roll as defined in section A.3.8.9) and the Original Message was sent over an

hour ago.

An IMDN Negative-Delivery report shall be sent if an FTD was ignored. A Negative-Delivery

shall follow [RFC5438] and shall include an mls:report extension as defined in section

7.7.2.2.

If the FTD was incorrectly signed, or the client cannot verify the signature of the FTD, the client

shall self-heal itself.

Upon receipt of a valid FTD message, the client shall:

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 66 of 90

• Find the Original Message, if present. The client shall ignore any edits to the Original

Message.

• Construct a ResentMessage struct containing the original as defined in section 7.5.4.

• Encrypt the struct using the one-to-one HPKE encryption algorithm defined in Annex

C.4.1 to the FTD sender client.

• The HPKE ciphertext is then reencrytped to all other clients using MLS message per

section 9.1.1.

• Set the original-message-id CPIM header.

• Perform a Key Update procedure as defined in section 9.5.2.

The sender shall stop a repeated chain of FTDs for the same Original Message after a

maximum of 5 attempts. Fallback procedures defined in [GSMA PRD-RCC.71] shall apply.

10.4 Receiving a Re-Sent Message

The resent message is double encrypted and sent to all group members. When receiving the

encrypted message, the client shall

• Decrypt the outer layer using the MLS message decryption per section 9.1.1.

• Process the decrypted payload:

o Check the type field of the SecretPayload struct. If it is hpke_1_to_1_message

type, it deserialize the decrypted payload to

HPKEInnerEncapsulatedKeyAndCiphertext struct. Otherwise follow procedures in

section 9.1.1

o Check whether the receiver_leaf_index matches its leaf index in the MLS ratchet

tree or not.

▪ If it matches, then it performs the second decryption using the HPKE algorithm

defined in Annex C.4.2.

▪ Otherwise the message is ignored.

o Use the original-message-id CPIM header as the message id.

The Re-Sent Message shall be ignored if the user never received the Original Message. A

Negative-Delivery shall be sent.

If the user received the Original Message but has not successfully decrypted it, the client

shall, upon decryption of the Re-Sent Message, display it to the user. The client may use the

received timestamp of the Original Message to determine the correct placement of the

message in the conversation.

The client shall send a delivery report for the new message as defined in section 7.7.1. The

delivery report shall be sent for the Re-Sent Message ID.

A read report for the re-sent message shall be sent for the Re-Sent Message ID.

Any other features (such as incoming edit, delete, incoming reactions, or outgoing reactions)

shall always refer to the RCS Message ID of the Original Message.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 67 of 90

If an incoming reaction is received before the Re-Sent Message is received, the client shall

apply the reaction to the future (not yet received) Re-Sent Message.

If an incoming edit of the Original Message is received before the Re-Sent Message is

received, the client may ignore the Re-Sent Message.

If an incoming delete of the Original Message is received before the Re-Sent Message is

received, the client should ignore/delete the Re-Sent Message.

10.5 Recovering Group Subject and Icon

When a group member receives an External Commit from a member and successfully
applies it, they shall:

• Take the symmetric key from icon_key and subject_key in their local GroupInfo

object.

• Create an MLS PrivateMessage that encrypts the symmetric keys using the

application encryption key of the current epoch as described in section 6.3 of

[RFC9420].

• Follow the procedures in section 9.1.1 to send the PrivateMessage.

When the member who sent the external commit receives an application message that
contains the symmetric key, they shall:

• Decrypt the Application Message to get the symmetric key.

• Download the encrypted Group Chat Icon from the RCS File Transfer server, and use

the symmetric key to decrypt it, as per Annex C.4.2C.3.

• Decrypt the group subject as per Annex C.3.

• Create an icon_key and subject_key extension as per sections 7.11.3.1 and

7.11.5.1.

• Add the icon_key and subject_key extensions to the locally maintained

GroupInfo object.

11 Encryption Status Change

RCS Conversations can be in one of two states—encrypted or unencrypted—and those

states may change during the life of the RCS Conversation. While the state is encrypted, the

clients shall not send unencrypted messages in the RCS Conversation.

11.1 Unencrypted to Encrypted

The client shall, periodically request the capabilities of the Participants of an unencrypted

Active RCS Conversation. The frequency of these requests is defined in section 11.1.1.

Once the client detects that all Participants are capable of MLS, the client shall attempt to

resurrect the previous MLS Group (if present) for the RCS Conversation (section 11.1.2),

provided that all certificates in that MLS Group are valid and non-expired (as per Annex A). If

resurrection is not possible, the client shall create a new MLS Group Era (including first-time

creation) as described in section 8.3.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 68 of 90

11.1.1 Periodic Capability Refresh for Unencrypted Groups

The capabilities of Participants in Unencrypted Groups shall be refreshed only for Active

Groups:

• The client shall refresh the Participants’ capabilities at least once per month.

• It is recommended to refresh capabilities once per week.

• Capabilities may be refreshed when the conversation is opened.

• For scheduled refreshes, the client shall add a random backoff between attempts.

NOTE: Conversation moving from Inactive to Active is left for further specification.

11.1.2 Resurrecting former MLS Group

To resurrect the RCS Conversation as MLS, the client shall:

• Fetch the KeyPackages for the Participants that do not exist in the MLS Group or who

have expired Certificates, and create Proposals to add those Participants’ Clients to

the MLS Group.

• Create proposals to remove the Clients of any Participants who are not part of the

RCS Conversation from the MLS Group.

• Create and send a multi-part MSRP message with:

o Welcome message to all added or re-added MLS members (if any), as described

in section 9.2.

o Single Commit with the Proposals (Add/Remove) and removal of the end_mls

extension.

11.2 Encrypted to Unencrypted

The RCS Conversation shall migrate from encrypted to unencrypted in the following

situations:

● An unsigned delivery report is received for an encrypted message.

● A Plaintext RCS Message is received.

● A new Participant is being added who does not support encryption.

● A capability check made for a Participant in the RCS Conversation did not return an

MLS capability.

Before changing the encryption state of an RCS Conversation to unencrypted, the client may

perform a capability check to determine if all users still support encryption and, if they do, the

client may choose not to change the encryption status to unencrypted.

In order to move the encryption state of an RCS Conversation to unencrypted, the client

sends a Commit to the current members of the MLS Group with an end_mls extension, as

an MSRP message.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 69 of 90

 Certificate profiles

A.1 Root Certificate Profile

A.1.1 Version

Certificates shall be of type X.509 v3.

A.1.2 Serial Number

Certificate Authorities (CAs) shall generate non‐sequential Certificate serial numbers greater

than zero (0) and less than 2^159 containing at least 64 bits of output from a CSPRNG.

A.1.3 Signature Algorithm

All objects signed by a CA Private Key shall conform to these requirements on the use of the

AlgorithmIdentifier or AlgorithmIdentifier‐derived type in the context of signatures.

• The signatureAlgorithm field of a Certificate.

• The signature field of a TBSCertificate (for example, as used by a Certificate).

A.1.3.1 ECDSA

The CA shall use the appropriate signature algorithm and encoding based upon the signing

key used.

If the signing key is P‐384, the signature shall use ECDSA with SHA‐384. When encoded,

the AlgorithmIdentifier shall be byte‐for‐byte identical with the following hex‐encoded bytes:

300a06082a8648ce3d040303.

If the signing key is P‐521, the signature shall use ECDSA with SHA‐512. When encoded,

the AlgorithmIdentifier shall be byte‐for‐byte identical with the following hex‐encoded bytes:

300a06082a8648ce3d040304.

A.1.4 Issuer

The encoded content of the Issuer Distinguished Name field of a Certificate shall be byte‐for‐

byte identical with the encoded form of the Subject Distinguished Name field.

A.1.5 Validity

The maximum validity period (From RFC 5280, “the period of time from notBefore through

notAfter, inclusive”) is 3652 days (approximately 10 years). The minimum validity period is

365 days (approximately 1 years). The notBefore date is the time of signing or a time no

earlier than one day prior to the time of signing.

For the purpose of calculations, a day is measured as 86,400 seconds. Any amount of time

greater than this, including fractional seconds and/or leap seconds, shall represent an

additional day.

A.1.6 Subject

The Subject field shall contain a countryName, organizationName, and commonName, as

specified with ObjectIdentifiers (OID [ITU-T X.680]), encoding requirements, and values as in

table below. The Subject field may contain a stateOrProvinceName and localityName, as

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 70 of 90

specified with OIDs, encoding requirements, and values as in table below. Other Attributes

should not be included.

The subject shall encode the fields in the relative order as they appear in the table. Each

Name must contain an RDNSequence. Each RelativeDistinguishedName must contain

exactly one AttributeTypeAndValue. Each Name must not contain more than one instance of

a given AttributeTypeAndValue across all RelativeDistinguishedNames.

Attribute OID Presence Encoding

Requirements

Max

Length

Value

countryName 2.5.4.6 must must use

PrintableString

2 The two‐letter

ISO 3166‐1

country code

for the country

in which the

CA’s place of

business is

located.

stateOrProvinceName 2.5.4.8 may must use

UTF8String or

PrintableString

128 If present, the

CA’s state or

province

information.

localityName 2.5.4.7 may must use

UTF8String or

PrintableString

128 If present, the

CA’s locality.

organizationName 2.5.4.10 must must use

UTF8String or

PrintableString

64 The CA’s name

or DBA.

commonName 2.5.4.3 must must use

UTF8String or

PrintableString

64 The contents

should be an

identifier for the

certificate such

that the

certificate’s

Name is unique

across all

certificates

issued by the

issuing

certificate.

Any other attribute should not

Table 7: Root Certificate Attributes

A.1.7 Subject Public Key

The following requirements apply to the subjectPublicKeyInfo field within a Certificate. No

other encodings are permitted.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 71 of 90

A.1.7.1 ECDSA

The CA shall indicate an ECDSA key using the id‐ecPublicKey (OID: 1.2.840.10045.2.1)

algorithm identifier. The parameters shall use the namedCurve encoding.

• For P‐384 keys, the namedCurve shall be secp384r1 (OID: 1.3.132.0.34).

• For P-521 keys, the nameCurve shall be secp521r1 (OID: 1.3.132.0.35).

When encoded, the AlgorithmIdentifier for ECDSA keys shall be byte‐for‐byte identical with

the following hex‐encoded bytes:

• For P‐384 keys, 301006072a8648ce3d020106052b81040022.

• For P-521 keys, 301006072a8648ce3d020106052b81040023.

A.1.8 Extensions

The following list of extensions is defined for root certificates. Any other extension not

defined herein shall not be included.

A.1.8.1 Subject KeyIdentifier

This extension shall be present and shall not be marked critical. It should contain a value

that is derived from the Public Key included in the Root Certificate.

A.1.8.2 Key Usage

This extension shall be present and shall be marked critical.

Bit positions shall be set for keyCertSign and cRLSign. Other bit positions shall not be set.

A.1.8.3 Certificate Policies

This extension should not be present and should not be marked critical. It shall include

exactly one of the reserved policyIdentifiers documented herein. The certificatePolicies shall

not include policyQualifiers.

A.1.8.4 Basic Constraints

This extension shall be present and shall be marked critical. The cA field shall be true.

pathLenConstraint field should not be present.

A.1.8.5 Vendor ID

This extension shall be present and should not be marked critical.

This extension asserts the Vendor ID assigned by the GSMA to the vendor that owns this

root.

id- gsmaRCSE2EE OBJECT IDENTIFIER ::=

 { joint-iso-itu-t(2) international-organizations(23) gsma(146)

rcs(2) rcsE2EE (1)}

id-rcsVendorId OBJECT IDENTIFIER ::= { gsmaRCSE2EE 6 }

vendorId ::= INTEGER

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 72 of 90

A.2 Intermediate CA Certificate Profile

A.2.1 Version

Certificates shall be of type X.509 v3.

A.2.2 Serial Number

CAs shall generate non‐sequential Certificate serial numbers greater than zero (0) and less

than 2^159 containing at least 64 bits of output from a CSPRNG.

A.2.3 Signature Algorithm

All objects signed by a CA Private Key shall conform to these requirements on the use of the

AlgorithmIdentifier or AlgorithmIdentifier‐derived type in the context of signatures.

• The signatureAlgorithm field of a Certificate.

• The signature field of a TBSCertificate (for example, as used by a Certificate).

A.2.3.1 ECDSA

The CA shall use the appropriate signature algorithm and encoding based upon the signing

key used.

If the signing key is P‐384, the signature shall use ECDSA with SHA‐384. When encoded,

the AlgorithmIdentifier shall be byte‐for‐byte identical with the following hex‐encoded bytes:

300a06082a8648ce3d040303.

If the signing key is P‐521, the signature shall use ECDSA with SHA‐512. When encoded,

the AlgorithmIdentifier shall be byte‐for‐byte identical with the following hex‐encoded bytes:

300a06082a8648ce3d040304.

A.2.4 Issuer

The encoded content of the Issuer Distinguished Name field of a Certificate shall be byte‐for‐
byte identical with the encoded form of the Subject Distinguished Name field of the Issuing CA
Certificate.

A.2.5 Validity

The maximum validity period (From RFC 5280, “the period of time from notBefore through

notAfter, inclusive”) is 1827 days (approximately 5 years). The minimum validity period is

365 days (approximately 1 year). The notBefore date is the time of signing or a time no

earlier than one day prior to the time of signing.

For the purpose of calculations, a day is measured as 86,400 seconds. Any amount of time

greater than this, including fractional seconds and/or leap seconds, shall represent an

additional day.

A.2.6 Subject

The Subject field shall contain a countryName, organizationName, and commonName, as

specified with OIDs, encoding requirements, and values as in table below. The Subject field

may contain a stateOrProvinceName and localityName, as specified with OIDs, encoding

requirements, and values as in table below. Other Attributes should not be included.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 73 of 90

The subject shall encode the fields in the relative order as they appear in the table. Each

Name must contain an RDNSequence. Each RelativeDistinguishedName must contain

exactly one AttributeTypeAndValue. Each Name must not contain more than one instance of

a given AttributeTypeAndValue across all RelativeDistinguishedNames.

Attribute OID Presence Encoding

Requirements

Max

Length

Value

countryName 2.5.4.6 must must use

PrintableString

2 The two‐letter

ISO 3166‐1

country code for

the country in

which the CA’s

place of

business is

located.

stateOrProvinceName 2.5.4.8 may must use

UTF8String or

PrintableString

128 If present, the

CA’s state or

province

information.

localityName 2.5.4.7 may must use

UTF8String or

PrintableString

128 If present, the

CA’s locality.

organizationName 2.5.4.10 must must use

UTF8String or

PrintableString

64 The CA’s name

or DBA.

commonName 2.5.4.3 must must use

UTF8String or

PrintableString

64 The contents

should be an

identifier for the

certificate such

that the

certificate’s

Name is unique

across all

certificates

issued by the

issuing

certificate.

Any other attribute should not

Table 8: Intermediate Certificate Attributes

A.2.7 Subject Public Key

The following requirements apply to the subjectPublicKeyInfo field within a Certificate. No

other encodings are permitted.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 74 of 90

A.2.7.1 ECDSA

The CA shall indicate an ECDSA key using the id‐ecPublicKey (OID: 1.2.840.10045.2.1)

algorithm identifier. The parameters shall use the namedCurve encoding.

• For P‐256 keys, the namedCurve shall be secp256r1 (OID: 1.2.840.10045.3.1.7).

• For P‐384 keys, the namedCurve shall be secp384r1 (OID: 1.3.132.0.34).

When encoded, the AlgorithmIdentifier for ECDSA keys shall be byte‐for‐byte identical with

the following hex‐encoded bytes:

• For P‐256 keys, 301306072a8648ce3d020106082a8648ce3d030107.

• For P‐384 keys, 301006072a8648ce3d020106052b81040022.

A.2.8 Extensions

The following list of extensions are defined for intermediate CA certificates. Any other

extension not defined herein should not be included.

A.2.8.1 Authority Key Identifier

This extension shall be present and shall not be marked critical. The keyIdentifier field shall

be present and must be identical to the subjectKeyIdentifier field of the Issuing CA.

authorityCertIssuer and authorityCertSerialNumber fields shall not be present.

A.2.8.2 Subject Key Identifier

This extension shall be present and shall not be marked critical. It should contain a value

that is derived from the Public Key included in the intermediate CA Certificate.

A.2.8.3 Key Usage

This extension shall be present and shall be marked critical.

Bit positions shall be set for keyCertSign and cRLSign. Other bit positions shall not be set.

A.2.8.4 Certificate Policies

This extension may be present and should not be marked critical.

The CA may restrict the policies which this CA may issue. If the CA is policy-restricted, this

extension shall include exactly one of the reserved policyIdentifiers documented herein and

may contain one or more identifiers documented by the CA in its Certificate Policy (CP)

and/or Certificate Practice Statement (CPS) and must not include the anyPolicy Policy

Identifier.

The certificatePolicies shall not include policyQualifiers.

A.2.8.5 Basic Constraints

This extension shall be present and shall be marked critical. The cA field shall be true.

pathLenConstraint field may be present.

A.2.8.6 Authority Information Access

This extension may be present. This extension shall not be marked critical.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 75 of 90

When provided, every accessMethod shall have the UniformResourceIdentifier (URI)

scheme HTTP. Other schemes or GeneralName types shall not be present.

The authorityInformationAccess extension may contain accessMethod values of type id-ad-

ocsp that specifies the URI of the Issuing CA’s OCSP responder.

The authorityInformationAccess extension may contain at least one accessMethod value of

type id-ad-caIssuers that specifies the URI of the Issuing CA’s Certificate.

Other accessMethod types shall not be present.

A.2.8.7 CRL Distribution Points

This extension shall be present and should not be marked critical. The CRL Distribution

Points extension must contain at least one DistributionPoint; containing more than one is not

recommended. The DistributionPointName must be a fullName with at least one

GeneralName. All GeneralNames shall have the URI scheme HTTP. The reasons and

cRLIssuer fields must not be present.

A.2.8.8 Extended Key Usage

This extension shall be present. The extension shall contain a single element, a

KeyPurposeId with value

id-kp-rcsMlsClient OBJECT IDENTIFIER ::= { id-appleDraftRCSE2EE 3 }

A.3 Client Certificate Profile

A.3.1 Version

Certificates shall be of type X.509 v3.

A.3.2 Serial Number

CAs shall generate non‐sequential Certificate serial numbers greater than zero (0) and less

than 2^159 containing at least 64 bits of output from a CSPRNG.

A.3.3 Signature Algorithm

All objects signed by a CA Private Key shall conform to these requirements on the use of the

AlgorithmIdentifier or AlgorithmIdentifier‐derived type in the context of signatures.

• The signatureAlgorithm field of a Certificate.

• The signature field of a TBSCertificate (for example, as used by a Certificate).

• The participantSignatureAlgorithm field of a ParticipantInfo.

A.3.3.1 ECDSA

The CA shall use the appropriate signature algorithm and encoding based upon the signing

key used.

If the signing key is P‐256, the signature shall use ECDSA with SHA‐256. When encoded,

the AlgorithmIdentifier shall be byte‐for‐byte identical with the following hex‐encoded bytes:

300a06082a8648ce3d040302.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 76 of 90

If the signing key is P‐384, the signature shall use ECDSA with SHA‐384. When encoded,

the AlgorithmIdentifier shall be byte‐for‐byte identical with the following hex‐encoded bytes:

300a06082a8648ce3d040303.

A.3.4 Issuer

The encoded content of the Issuer Distinguished Name field of a Certificate shall be byte‐for‐

byte identical with the encoded form of the Subject Distinguished Name field of the Issuing

CA Certificate.

A.3.5 Validity

The maximum validity period (From RFC 5280, “the period of time from notBefore through

notAfter, inclusive”) is 76 days. The minimum validity period is 45 days. The notBefore field

must not be more than one day prior to the time of issuance and should be at least one hour

prior to the time of issuance.

For the purpose of calculations, a day is measured as 86,400 seconds. Any amount of time

greater than this, including fractional seconds and/or leap seconds, shall represent an

additional day. For this reason, Subscriber Certificates should be issued with a notAfter that

is not more than 6,566,340 seconds after the notBefore.

The CA or Rregistration Authority (RA) shall validate all identity attributes of the Subject and

SubjectAlternativeName to be included in the Certificate. If the evidence has an explicit

validity period, the CA shall verify that the time of the identity validation is within this validity

period. In context this can include the notBefore and notAfter fields of a digital signature

Certificate or the date of expiry of an identity document or the expiry of the ACS Signed

Tuple (section 7.12). The CA or RA shall retain information sufficient to evidence the

fulfillment of the identity validation process and the verified attributes.

A.3.6 Subject

The Subject Name should contain an id-clientIdentifier Attribute type with an

RcsMlsClientIdentifer value containing a UUID (Universally Unique Identifier) conforming to

RFC 9562 version 4 created with random bytes and using a UTF8String encoding. The

Subject Name may contain a CommonName containing the RcsMlsClientIdentifer. The

Subject Name must contain either a id-clientIdentifier type and a CommonName and must

not contain both a id-clientIdentifier type and a CommonName. The Subject Name shall not

contain any other fields.

id-clientIdentifier AttributeType ::= { id-appleDraftRCSE2EE 1 }

RcsMlsClientIdentifier ::= UTF8String (SIZE (36))

A.3.7 Subject Public Key

The following requirements apply to the subjectPublicKeyInfo field within a Certificate. No

other encodings are permitted.

A.3.7.1 ECDSA

The CA shall indicate an ECDSA key using the id‐ecPublicKey (OID: 1.2.840.10045.2.1)

algorithm identifier. The parameters shall use the namedCurve encoding.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 77 of 90

• For P‐256 keys, the namedCurve shall be secp256r1 (OID: 1.2.840.10045.3.1.7).

• For P‐384 keys, the namedCurve shall be secp384r1 (OID: 1.3.132.0.34).

When encoded, the AlgorithmIdentifier for ECDSA keys shall be byte‐for‐byte identical with

the following hex‐encoded bytes:

• For P‐256 keys, 301306072a8648ce3d020106082a8648ce3d030107.

• For P‐384 keys, 301006072a8648ce3d020106052b81040022.

A.3.8 Extensions

The following list of extensions are defined for leaf certificates. Any other extension not

defined herein should not be included.

A.3.8.1 Authority Key Identifier

This extension shall be present and shall not be marked critical. The keyIdentifier field shall

be present and must be identical to the subjectKeyIdentifier field of the Issuing CA.

authorityCertIssuer and authorityCertSerialNumber fields shall not be present.

A.3.8.2 Subject Key Identifier

This extension should be present and shall not be marked critical. It should contain a value

that is derived from the Public Key included in the Client Certificate.

A.3.8.3 Key Usage

This extension shall be present and should be marked critical.

Bit positions shall be set for digitalSignature. Other bit positions shall not be set.

A.3.8.4 Certificate Policies

This extension shall be present and should not be marked critical. It shall include exactly one

of the reserved policyIdentifiers documented herein and may contain one or more identifiers

documented by the CA in its CP and/or CPS. The certificatePolicies shall not include

policyQualifiers.

id-RCSE2EEPolicyId OBJECT IDENTIFIER ::= { id-appleDraftRCSE2EE 2 }

A.3.8.5 Subject Alternative Name

This extension shall be present. This extension should not be marked critical.

The Subject Alternative Name shall contain at least one GeneralName of type

UniformResourceIdentifier (URI). The URI shall be a Global Number tel URI per

[RFC3966]. The URI shall not contain visual separators. The Global Number shall not

contain any parameters, extensions, or isdn-subaddress.

Multiple GeneralNames are supported for re-numbering situations.

A.3.8.6 Basic Constraints

This extension may be present. The cA field shall not be true. pathLenConstraint field shall

not be present.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 78 of 90

A.3.8.7 Extended Key Usage

This extension shall be present. The extension shall contain a single element, a

KeyPurposeId with value

id-kp-rcsMlsClient OBJECT IDENTIFIER ::= { id-appleDraftRCSE2EE 3 }

A.3.8.8 Authority Information Access

This extension should be present. This extension shall not be marked critical.

When provided, every accessMethod shall have the URI scheme HTTP. Other schemes or

GeneralName types shall not be present.

The authorityInformationAccess extension should not contain accessMethod values of type

id-ad-ocsp that specifies the URI of the Issuing CA’s OCSP responder.

The authorityInformationAccess extension should contain at least one accessMethod value

of type id-ad-caIssuers that specifies the URI of the Issuing CA’s Certificate.

Other accessMethod types shall not be present.

A.3.8.9 Participant Information

This extension shall be present. This extension shall be marked critical.

The Participant Information extension binds this client certificate to a particular participant in

the RCS/MLS ecosystem.

Extension ASN.1 definition:

id-participantInformation OBJECT IDENTIFIER ::=

 { appleDraftRCSE2EE 4 }

ParticipantInformation ::= SEQUENCE {

 vendorId INTEGER,

 participantSignatureValidity Validity,

 participantSignatureAlgorithm AlgorithmIdentifier,

 participantSignatureValue BIT STRING,

 participantKey SubjectPublicKeyInfo OPTIONAL,

 participantKeyRolls [0] IMPLICIT SEQUENCE SIZE (1..5) OF

 ParticipantKeyRoll OPTIONAL

}

Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time }

Time ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

ParticipantKeyRoll ::= SEQUENCE {

 participantRollSignatureAlgorithm AlgorithmIdentifier,

 participantRollSignatureValue BIT STRING,

 oldParticipantKey SubjectPublicKeyInfo

}

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 79 of 90

The vendorId shall match the vendorId asserted in the root certificate.

The participantSignatureValidity shall have a maximum validity period (from [RFC5280], “the

period of time from notBefore through notAfter, inclusive”) of 76 days. The

participantSignatureValidity shall have a minimum validity period of 45 days. The notBefore

field must not be more than one day prior to the time of signature creation and should be at

least one hour prior to the time of signature creation. The choice of Time format shall be

conformant with section 4.1.2.5 of [RFC5280].

The particpantSignatureAlgorithm and participantRollSignatureAlgorithm shall be one of the

allowed AlgorithmIdentifiers from Signature Algorithm.

The participantKey is the key that produced the participantSignatureValue. The

participantKey shall be one of the allowed algorithms in Subject Public Key. If omitted, the

participantKey is the same as the Subject Public Key. The issuer shall validate the

participantKey for the subject and subjectAltName of the certificate for lifetime of issuance.

The participantSignatureValue contains a digital signature computed upon the following

ASN.1 DER-encoded structure, matching fields from the tbsCertificate:

tbsParticipantInfo ::= SEQUENCE {

 subject Name,

 vendorId INTEGER,

 participantSignatureValidity Validity,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 subjectAltName SubjectAltName }

The tbsParticipantInfo contains the Subject, Subject Public Key, and Subject Alternative

Name (byte-for-byte matching the fields in the tbsCertificate) and the vendorId and

participantSignatureValidity (byte-for-byte matching the fields in the ParticipantInfo). The

participant creates this signature upon user approval of a client that will use the subject

public key, subject, and subject alternative name. The issuer shall validate the

participantSignatureValue is valid before issuing the certificate.

The SEQUENCE OF ParticipantKeyRoll objects forms a chain of continuity across

ParticipantKeys as they are changed by Participants. In the first ParticipantKeyRoll, the

participantRollSignatureValue is a signature over the participantKey by the

oldParticipantKey. For each subsequent ParticipantKeyRoll item the

participantRollSignatureValue is a signature over the oldParticipantKey in the

prior ParticipantKeyRoll with the oldParticipantKey contained in that ParticipantKeyRoll item.

A.3.8.10 ACS Participant Information

This extension shall be present.

The ACS Participant Information extension value is an OCTET STRING of the encoded

SignedEncryptionIdentityProof (section 7.12).

Extension ASN.1 definiton:

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 80 of 90

id-acsParticipantInformation OBJECT IDENTIFIER ::=

 { appleDraftRCSE2EE 5 }

A.4 Certificate Validation Procedures

A.4.1 Client Validation

Client will validate the credentials on

1. Query receipt from Home KDS

2. All commits with special handling required for

a) Update

b) Re-sync

Note that except where specified, commits signed by expired (or otherwise invalid)

credentials will be rejected; however, the flows below allow a participant with an invalid

credential to update to a valid credential.

A.4.1.1 Default Validation Requirements

Clients verifying RCS E2EE credentials must in all flows:

1. Verify that the client credential properly chains by verifying signatures to a provided

intermediate CA. (see [RFC5280]). Including the following detailed client certificate

verification items:

a) Ensure the extendedKeyUsage contains the id-kp-rcsMlsClient key purpose in

the leaf certificate and no others.

b) Ensure the key usage has the digitalSignature bit set.

c) Verify the correctness of the ParticipantInfo Extension:

i. Construct the tbsParticipantInfo from the certificate

ii. Verify the participantSignatureValue with the participantKey (or if not

present, the subject public key info of the certificate) against the

constructed tbsPartipantInfo using the

specified participantSignatureAlgorithm.

iii. Verify all ParticipantKeyRoll items by verifying the

participantRollSignatureValue with the oldParticipantKey against the

participantKey (or prior oldParticipantKey) using the

specified participantRollSignatureAlgorithm

d) Certificate lifetime is 76 days or fewer.

e) That the certificate and ParticipantInfo are not expired, except as in detailed in

specific flows below.

2. Verify that the provided intermediate CA properly chains to a trusted root

certificate (see [RFC5280]). Including the following detailed CA verification items:

a) That the CA certificate is not revoked per the CRL DP.

b) That the BasicConstraints extension has cA field equal to TRUE (where TRUE

is DER-encoded, meaning 0xff)

c) Ensure the key usage has the keyCertSign bit set.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 81 of 90

d) Ensure the extendedKeyUsage contains the id-kp-rcsMlsClient key purpose in

the leaf certificate and no others.

e) Certificate lifetime is 1827 days or fewer.

f) That the certificate is not expired, except as in detailed in specific flows below.

3. Verify that the VendorID in the ParticipantInfo matches the VendorID in the root

certificate.

A.4.1.2 Query Validation

In addition to the Default Validation, on query response from the Home KDS the client will

verify:

1. that the SAN URI matches the expected MSISDN of the RCS participant queried.

2. that the client certificate is not expired and has at least 30 days left before expiration.

A.4.1.3 Add Proposal and Commit

Clients must not issue Add Proposals with less than 30 days remaining before the expiry of

the credential in the updated Leaf Node.

A.4.1.4 Welcome Package

Upon receipt of the Welcome Package, a client should verify all of the certificates in the Leaf

Nodes of the group.

A.4.1.5 Self Update Commit

In addition to the Default Validation Requirements, on a Commit with an Update Path that

changes the committer’s LeafNode with a new Certificate the client will verify:

1. That the new LeafNode credential has at least one matching SAN URI with the existing

certificate in the LeafNode.

2. That the new certificate an issuance date after the existing certificate.

3. Expiration of the existing LeafNode certificate is not checked in this flow (allowing a

participant with an expired certificate to update to a new, non-expired certificate).

Clients must not issue self update commits with less than 30 days remaining before the

expiry of the credential in the updated Leaf Node.

A.4.1.6 Resync Commit

In addition to the Default Validation Requirements, on a Resync Commit, the client will verify:

1. That the certificate for the participant the Remove Proposal has at least one matching

SAN URI with the certificate in the Add Proposal.

2. That the external commit is signed by the certificate in the Add proposal.

3. That the client certificate in the Add Proposal has an issuance date after the certificate

in the Removed node.

4. Expiration of the certificate in the Remove Proposal is not checked.

Clients must not issue Add Proposals with less than 30 days remaining before the expiry of

the credential in the updated Leaf Node.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 82 of 90

A.4.2 KDS Validation

KDSs will validate the credentials on

1. KeyPackage update

2. Query receipt from a peer KDS

A.4.2.1 Default Validation Requirements

KDSs verifying RCS E2EE credentials must in all flows:

1. Verify that the client credential properly chains by verifying signatures to a provided

intermediate CA. (See RFC 5280.) Including the following detailed client certificate

verification items:

a) Verify that the client certificate has a remaining lifetime of at least 30 days.

2. Verify that the provided intermediate CA properly chains to a root certificate on the

GSMA Trust List. (See RFC 5280.) Including the following detailed CA verification

items:

a) That the CA certificate is not revoked per the CRL DP.

3. That the certificate and ParticipantInfo are not expired.

4. Verify that the VendorID extension in the root certificate asserts the KDS vendor’s ID

for KeyPackage update or the same vendor ID as the replying KDS.

A.4.2.2 KDS Query Fulfillment Behavior

KDSs must not return KeyPackages to a query where the credential has less than 30 days

before expiry. This requirement prevents situations where the KDS fulfills a query without the

client being able to perform the Add proposal and have delivery of that proposal within the

lifetime of the certificate.

A.4.3 RCS SPN Validation

RCS SPN shall validate the credentials on

1. All commits

2. Within all proposals

A.4.3.1 Default Validation Requirements

RCS SPN verifying RCS E2EE credentials shall in all flows:

1. Verify that the client credential properly chains by verifying signatures to a provided

intermediate CA. (See RFC 5280.) Including the following detailed client certificate

verification items:

a) That the certificate is not expired and has 30 days before expiry, except as in

detailed in specific flows below.

2. Verify that the provided intermediate CA properly chains to a trusted root certificate.

(See RFC 5280.) Including the following detailed CA verification items:

a) That the CA certificate is not revoked per the CRL DP.

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 83 of 90

b) That the certificate is not expired.

3. Verify the ACSParticipantInfo extension:

a) Verify that the participantKey matches the ParticipantKey in the ParticipantInfo

extension

b) Verify that the VendorID asserted the root certificate matches the VendorID

asserted in the ParticipantInfo and ACSParticipantInfo

c) Verify the MSISDNs asserted in the ACSParticipantInfo extension match the

SAN URIs in the client certificate.

d) Verify that the MSISDNs asserted in the ACSParticipantInfo match the

expected MSISDN for the RCS channel.

e) Verify the signature with one of the ACS certificates.

f) Verify that the ACSParticipantInfo is not expired.

A.4.3.2 Self Update Commit

In addition to the Default Validation Requirements, on a Commit with an Update Path that

changes the committer’s LeafNode with a new Certificate the RCS SPN will verify:

1. That the new LeafNode credential has at least one matching ACSParticipantInfo

MSISDN with existing certificate in the LeafNode.

2. That the new certificate has an issuance date after the existing certificate.

3. Expiration of the existing LeafNode certificate is not checked in this flow (allowing a

participant with an expired certificate to update to a new, non-expired certificate).

A.4.3.3 Resync Commit

In addition to the Default Validation Requirements, on a Resync Commit, the client will verify:

1. That the certificate for the participant the Remove Proposal has at least one

matching ACSParticipantInfo MSISDN with the certificate in the Add Proposal.

2. That the external commit is signed by the certificate in the Add proposal.

3. That the client certificate in the Add Proposal has an issuance date after the certificate

in the Removed node.

4. Expiration of the certificate in the Remove Proposal is not checked.

 Inter-KDS Interface

A The schema for the Inter-KDS Interface is written in gRPC.

Inter-kds.proto:

syntax = "proto3";

import "google/protobuf/timestamp.proto";

package kds_proto;

message RequestHeader {

 // UUID used to identify the request. Used for debugging and tracing

 // only.

 uint64 request_id = 1;

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 84 of 90

}

enum ResponseStatus {

 UNKNOWN_STATUS = 0;

 OK = 1;

 NOT_FOUND = 2;

 MALFORMED_ID = 3;

 UNSUPPORTED_CIPHER_SUITE = 4;

 NEWER_ENROLMENT_EXISTS = 5;

}

message Identifier {

 enum Type {

 UNKNOWN = 0;

 // Specified as E.164 format.

 PHONE_NUMBER = 1;

 }

 Type type = 1;

 string identifier = 2;

}

message GetSupportedCipherSuitesRequest {

 RequestHeader header = 1;

 repeated Identifier participant_id = 2;

}

message ParticipantCipherSuite {

 ResponseStatus status = 1;

 Identifier participant_id = 2;

 // All the Cipher Suites supported by the participant.
 // The Cipher Suites are defined in [RFC 9420]

 repeated uint32 cipher_suite = 3;

}

message GetSupportedCipherSuitesResponse {

 repeated ParticipantCipherSuite participant_cipher_suite = 1;

}

message GetKeyPackagesRequest {

 RequestHeader header = 1;

 // The highest common Cipher Suite supported by all the participants.

 uint32 cipher_suite = 2;

 repeated Identifier participant_id = 3;

}

message KeyPackage {

 // The client id that is contained in the key package. Must be a

 // globally unique identifier.

 string client_id = 1;

 // As defined in [RFC9420]. No encoding, padding or escaping

 // applied.

 bytes key_package = 2;

}

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 85 of 90

message ParticipantKeyPackage {

 ResponseStatus status = 1;

 Identifier participant_id = 2;

 repeated KeyPackage key_package = 3;

}

message GetKeyPackagesResponse {

 repeated ParticipantKeyPackage participant_key_package = 1;

}

message ParticipantRegistration {

 Identifier participant_id = 1;

 // Timestamp of when the user is registered. If the Participant on the

 // local KDS is newer than this timestamp, it may ignore this request.

 google.protobuf.Timestamp enrolment_time = 2;

}

// Sending a list of participants that have registered with the calling

// KDS. Can send a maximum of 50 participants in a single request.

message ParticipantRegistrationNotificationRequest {

 RequestHeader header = 1;

 repeated ParticipantRegistration participant_registration = 2;

}

message ParticipantNotificationStatus {

 ResponseStatus status = 1;

 Identifier participant_id = 2;

}

message ParticipantRegistrationNotificationResponse {

 repeated ParticipantNotificationStatus participant_notification_status =

1;

}

service InterKdsService {

 // Fetch the Cipher Suites supported by the Participants.

 rpc GetSupportedCipherSuites(GetSupportedCipherSuitesRequest)

 returns (GetSupportedCipherSuitesResponse);

 // Fetch KeyPackages for specified Participants and Cipher Suite

 rpc GetKeyPackages(GetKeyPackagesRequest) returns

(GetKeyPackagesResponse);

 // Updates this KDS instance that the Participant has registered with

 // another KDS instance.

 rpc

NotifyParticipantRegistration(ParticipantRegistrationNotificationRequest)

 returns (ParticipantRegistrationNotificationResponse);

}

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 86 of 90

 Cryptographic Operations

In this section, all cryptographic primitives, including hash functions, KDF, and AEAD are

defined by the Cipher Suite chosen by the group if not explicitly specified.

The symbol || denotes the append operation.

The symmetric key is an AEAD key of the AEAD algorithm defined by the group Cipher

Suite.

UInt32 is a 32 bit unsigned integer that is encoded in Big Endian representation.

== denotes equality checking

= denotes an assignment

C.1 Creating a Commitment for a Value

Given a value V and a label L, a Commitment for the Value V is computed as follows:

Commitment = Hash(HashContent)

struct {

 opaque label<V>;

 opaque value<V>;

} HashContent

And the fields are set to:

label = L;

value = V;

C.2 Encrypting a File

HKDF references HKDF<SHA256>.

HMAC references HMAC<SHA256> with a 256-bit tag output.

M is a byte vector of length <2^31 bytes representing the file to be encrypted.

K is a 256 bit randomly chosen key used for one and only one file.

Info denotes the original filename and is a byte vector of length < (2^16) - 1 bytes.

Encrypt(Key, M, Info)

Let ZV be a vector of 0 bytes of length 4.

Let IV be a 96 bit random nonce

Let salt =

0x3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c8

 be the 256 bit hex representation of pi.

Let k_enc||k_hmac = HKDF (Key, salt, Info) where each of k_enc and k_hmac

are exactly 256 bits long.

Variable messageLength is a UInt32 value

Let messageLength = LengthInBytes(M)

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 87 of 90

Variable paddingLength is a UInt32 value

Let paddingLength = Padme(messageLength)- messageLength

Let pad be a vector of 0 bytes that that has length equal to paddingLength

Let paddedMessage = messageLength||paddingLength||M||pad

Let IV’ = IV||ZV

Let Ciphertext = AES_CTR_ENC (k_enc, IV’, paddedMessage)

Let Tag = HMAC(k_hmac, IV||Ciphertext) (Tag is exactly 256 bits)

Output (IV, Ciphertext, Tag)

C.3 Decrypting a File

K is a 256 bit random key.

IV is a 96 bit nonce.

FileInfo, containing FileMetadata and FileEncryptionInfo, is received separately.

Ciphertext is the encrypted file which is a byte vector of size < (2^32)- 1.

Key = FileEncryptionInfo.key_material

IV = FileEncryptionInfo.iv

Tag = FileEncryptionInfo.hmac_tag

Info = FileMetadata.file_name

Decrypt(Key, Info, IV, Ciphertext, Tag).
Let ZV be a vector of 0 bytes of length 4.

Let salt =

0x3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c8 be the

256 bit representation hex of pi.

Verify LengthInBytes(C)>=8 else output error: ciphertext too small

Let k_dec||k_hmac = HKDF(Key, salt, Info) where each of k_dec and k_hmac

are exactly 256 bits long.

Let ComputedTag = HMAC(k_hmac, IV||Ciphertext) where ComputedTag is 256

bits long.

Verify that ComputedTag == Tag otherwise output error: Validation failure.

Let IV’ = IV||ZV

Let plaintext = AES_CTR_DEC(k_dec, IV’, Ciphertext)

Variable messageLength is a UInt32 value

Let messageLength = plaintext[0..3]

Verify messageLength<2^31 else output error: message too long

Variable paddingLength is a UInt32 value

Let paddingLength = plaintext[4..7]

Let paddedMessage = plainText[8..]

Verify LengthInBytes(Ciphertext) == (8 + messageLength + paddingLength)

else output error: ciphertext decoding

Verify paddingLength == (Padme(messageLength) - messageLength) else output

error: ciphertext decoding

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 88 of 90

Let message = paddedMessage[0.. messageLength -1]

Let pad = paddedMessage[messageLength ..]

Verify pad byte vector is all 0s vector else output error: ciphertext

decoding

Output (message)

C.4 One to one HPKE Encryption for Re-Sent Messages

This section defines an encryption schema to a single client in the MLS group using the

node HPKE Key.

It involves two layers of encryption: inner encryption using the recipient Leaf Node HPKE key

followed by outer encryption using the group MLS message encryption.

Struct {

 opaque discriminant[26] = “MLSv1 RCSv1 1:1 Encryption” (UTF8 Encoded);

 opaque group_id[32];

 uint64 epoch;

 uint32 era;

 uint32 receiver_leaf_index;

 uint32 sender_leaf_index;

} OuterInfo;

Struct {

 opaque group_id[32];

 uint64 epoch;

 uint32 era;

 uint32 receiver_leaf_index;

 uint32 sender_leaf_index;

} HPKEAADStruct;

C.4.1 Encryption

The OuterInfo struct and recipient Leaf Node public HPKE key are used to set up the HPKE

context and key per [RFC9180] and then the context is used to encrypt the serialized

ResentMessage struct as defined in section 7.5.7.

HPKEEncapsulatedKey, ContextS = SetupBaseS(pkR, OuterInfo);

HPKECiphertext = ContextS.Seal(HPKEAADStruct, message)

The key and the ciphertext are then wrapped in HPKEInnerEncapsulatedKeyAndCiphertext

struct.

Struct {

 uint32 receiver_leaf_index;

 opaque HPKEEncapsulatedKey<V>;

 opaque HPKECiphertext<V>;

 opaque original_message_hmac<V>;

} HPKEInnerEncapsulatedKeyAndCiphertext;

A SecurePayload struct is constructed as defined in section 7.5.4to include the serialized

HPKEInnerEncapsulatedKeyAndCiphertext struct, and the type field of the SecurePayload is

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 89 of 90

set to hpke_1_to_1_message. The SecurePayload will be encrypted using the normal MLS

message encryption.

C.4.2 Decryption

After the client decrypts an incoming MLS message and the SecurePayload type is

hpke_1_to_1_message, and the receiver leaf_leaf_index matches the client leaf index in the

MLS ratchet tree, it constructs the HPKE context and decrypts the payload.

contextR = SetupBaseR(HPKEEncapsulatedKey, skR, info):

message = context.Open(HPKEAADStruct, HPKECiphertext);

C.5 Identity Verification Code

Given a pair of Participants with their MSISDNs and Participants Keys, calculate the

following values:

struct {
 opaque msisdn<V>;
 opaque participant_identity_public_key<V>;
} User;

// Users are sorted by MSISDN ascending
struct {
 User first_user;
 User second_user;
} UserPairKeys;

string generate_code(UserPairKeys user_pair_keys) {

if(user_pair_keys.second_user.msisdn >

user_pair_keys.first_user.msisdn) { swap(&user_pair_keys.first_user,

&user_pair_keys.second_user); }
hash = SHA512(user_pair_keys)

// returns ~265 bit representation
return HASH_TO_DIGITS(/*digit_count=*/80, hash);

}

identity_verification_code = generate_code(user1, user2);

The identity_verification_code is the value shown to the user.

 Document Mangement

D.1 Document History

Version Date Brief Description of Change Approval

Authority

Editor /

Company

1.0 28

February

2025

Initial version ISAG Basel Al-

Naffouri /

Google

GSMA Non-confidential

Official Document RCC.16 - Rich Communication Suite – End-to-End Encryption Specification

V1.0 Page 90 of 90

D.2 Other Information

Type Description

Document Owner RCS Group

Editor / Company Basel Al-Naffouri / Google

